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Working with the BBC
to teach 16-18 year olds how to recognise fake news
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Working with the BBC
to teach 16-18 year olds how to recognise fake news

Deployed to every secondary school in the UK

9 in 10 said it improved their impression of the BBC

68% said it helped test the reliability of news
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Why?

After almost a decade of 
argument mining research, 
why is this the only public 
deployment?
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Why?

• Deployment requires engineering

• Argument mining is hard (really hard)

• Arguments in textbooks and arguments in armchairs
≠

Arguments in the real world



@ARG_tech ADVANCES IN ARGUMENT MINING – REED & BUDZYNSKA 16 / 94

This afternoon

• What arguments in the real world are like
Structure
Computational models
Arguments between people

• Mining real world arguments
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Argument structure I:
The pieces

Argumentative Discourse Units

• Much of the time, just Elementary Discourse Units (EDUs)
• Sometimes smaller than EDUs
• Sometimes bigger than EDUs 

(this is irritating)



@ARG_tech ADVANCES IN ARGUMENT MINING – REED & BUDZYNSKA 18 / 94

Argument structure I:
The pieces

• Argumentativeness vs. non-Argumentativeness

• Can be difficult to tell
   (this is irritating)

I love bananas.
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Argument structure I:
The pieces

• Argumentativeness vs. non-Argumentativeness

• Can be difficult to tell
   (this is irritating)

“What fruits do you like?” “I love bananas.”
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Argument structure I:
The pieces

• Argumentativeness vs. non-Argumentativeness

• Can be difficult to tell
   (this is irritating)

“What fruits do you like?” “I love bananas.”

“We should visit the Philippines. I love bananas and they 
grow amazing ones there – best in the world.”
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Argument structure I:
The pieces

• Argumentativeness vs. non-Argumentativeness

• Can be difficult to tell
   (this is irritating)

“What fruits do you like?” “I love bananas.” Not argument

“We should visit the Philippines. I love bananas and they 
grow amazing ones there – best in the world.” Support
 

“You hate all fruits!” “I love bananas.” Conflict 
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Argument structure I:
The pieces

• Argumentativeness vs. non-Argumentativeness

• Can be difficult to tell
   (this is irritating)

“What fruits do you like?” “I love bananas.”

“We should visit the Philippines. I love bananas and they 
grow amazing ones there – best in the world.”
 

“You hate all fruits!” “I love bananas.”
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Argument structure I:
The pieces

 Intrinsic vs. Extrinsic properties of ADUs

• Argumentative vs. Nonargumentative 
• Premise vs. Conclusion
• Claim vs. Evidence
• Backing, Warrant, Datum, Claim, Rebuttal (Toulmin 1958)
• ditto plus Modality (Freeman 1991)

all extrinsic (so require context to determine)
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Argument structure I:
The pieces

 Intrinsic vs. Extrinsic properties of ADUs

• Fact, Policy, Value (Wagemans, 2017) 
• Verifiable, Unverifiable, Experiential (Park & Cardie, 2014)
• Normative, Testimonial, and 60 more (Walton et al., 2008)
• many other ontologies

intrinsic (so in principle do not require context to  
  determine)
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Argument structure I:
The pieces

Why does this matter?

Arguments in the real world are often connected. 
(Your conclusion might be my premise.)

So argumentative units might have many contexts. 

So extrinsic features cannot be associated with ADUs alone.

Instead, they must be associated with relations between 
ADUs.
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Argument structure II:
The relations

Support(/Inference/Entailment)

Conflict(/Attack)
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Argument structure II:
The relations

Support(/Inference/Entailment)
• Convergent
• Linked
• Divergent (arguments are graphs not trees)
• (Serial, Complex)

Conflict(/Attack)
• Rebutting
• Undercutting
• (Undermining) ‘The Standard Account’

(Freeman, 1991)
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CLINTON : But it 's because I see this—we need to have 
strong growth , fair growth , sustained growth . We also 
have to look at how we help families balance the 
responsibilities at home and the responsibilities at 
business. So we have a very robust set of plans.

#10624
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Convergent Argument

CLINTON : But it 's because I see this—we need to have 
strong growth , fair growth , sustained growth . We also 
have to look at how we help families balance the 
responsibilities at home and the responsibilities at 
business. So we have a very robust set of plans.

#10624
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O'MALLEY : But we elected a president, not a magician, 
and there is urgent work that needs to be done right 
now. For there is a — deep injustice, an economic 
injustice that threatens to tear our country apart, and it 
will not solve itself...

#10810
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Linked Argument

O'MALLEY : But we elected a president, not a magician, 
and there is urgent work that needs to be done right 
now. For there is a — deep injustice, an economic 
injustice that threatens to tear our country apart, and it 
will not solve itself...

#10810
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BUSH: … We've created rules and taxes on top of every 
aspiration of people, and the net result is we're not 
growing fast, income's not growing.

#10832
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Divergent Argument

BUSH: … We've created rules and taxes on top of every 
aspiration of people, and the net result is we're not 
growing fast, income's not growing.

#10832
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CLINTON: You even at one time suggested that you 
would try to negotiate down the national debt of the 
United States.

TRUMP: Wrong. Wrong. 

#10848
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Rebutting Attack

CLINTON: You even at one time suggested that you 
would try to negotiate down the national debt of the 
United States.

TRUMP: Wrong. Wrong. 

#10848
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Undercutting Attack
(perhaps)

CLINTON: When I was secretary of state, we actually 
increased American exports globally 30 percent. We 
increased them to China 50 percent. So I know how to 
really work to get new jobs and to get exports that 
helped to create more new jobs.

HOLT: Very quickly...

TRUMP: But you haven't done it in 30 years 

#10847
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Argument structure II:
The relations

Argumentation schemes (Walton et al., 2008)
• Knowledge engineering / ontology building for 

argumentation

Argument from Expert Opinion
E is an expert in domain D
E claims that P
therefore, P is true
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Argument structure II:
The relations

Argumentation schemes (Walton et al., 2008)
• Knowledge engineering / ontology building for 

argumentation

Argument from Expert Opinion
E is an expert in domain D
E claims that P
therefore, P is true

Critical Questions: Is E biased?
  Is E trustworthy?
  Is P in the domain of D?
  ...
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Argument structure II:
The relations

An aside on enthymemes
• Missing pieces
 (e.g. Modus Ponens’ major premise in Modus Brevis)
• Difficult & contentious for humans to reconstruct
• Poor computational results

• There is a connection with argumentation schemes

• Difficulty is deep



@ARG_tech ADVANCES IN ARGUMENT MINING – REED & BUDZYNSKA 40 / 94

Enthymeme reconstruction game

• Write down a short sentence expressing a proposition 
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Enthymeme reconstruction game

• Write down a short sentence expressing a proposition 
• Show your proposition to your neighbour
• Between you, pick one proposition to be Conclusion and 
 the other to be Premise
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Enthymeme reconstruction game

• Write down a short sentence expressing a proposition 
• Show your proposition to your neighbour
• Between you, pick one proposition to be Conclusion and 
 the other to be Premise
• Imagine someone just delivered the argument to you: 

Premise so Conclusion. Write down one or more bits of 
additional information that the speaker is assuming in 
order to make this argument work.
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Enthymeme reconstruction game

• Enthymemes are overly constrained
If Premise then Conclusion would do (and make the 
argument deductively valid)

• Enthymemes are wildly under-constrained
(you used an enormous amount of world knowledge)

• Enthymemes are wildly under-constrained
(any two people could come up with different 
reconstructions)
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Arguments and persuasion

• Well structured arguments ≠ persuasive arguments

• Logos, Ethos, Pathos

• E.g. work with Reddit CMV (Tan et al., 2014)

•  On ethos (Duthie & Budzynska, 2018)
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Computational Models of Argument

• ABA, inspired by logic programming (Toni, 2014)
• Abstract Argumentation that focuses on attack 

(Dung, 1995)
• ASPIC+, adding structure to AFs

(Modgil & Prakken, 2014)
• AIF, with semantic web foundations 

(Chesnever at al, 2006) 

• see also COMMA conferences (www.comma-conf.org)
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Argument Datasets

• AMT (Peldszus & Stede, 2017)
• AAEC (Habernal & Gurevych, 2016)
• IAC2 (Anand et al., 2018)
• US2016 (Visser et al., 2019)
• www.aifdb.org

• see also SEMEVAL2018 (Task12)

• NB. Argument annotation is often expensive and often 
unsuitable for crowdsourcing
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Argument in Dialogue

• SDRT (requires semantic parsing)
• KoS (ditto)

• IAT (narrow scope)
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Inference Anchoring Theory

P
P  Q→
Q

Bob says, Q
Wilma says, Why?
Bob says, P
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Inference Anchoring Theory

(1) Bartholomew:  The real question, as opposed to going out 
to theoretical ‘nowhereville’, is to ask “What is the best welfare 
state we can make, in the real world? “

(2) Bartholomew: And that is a worthwhile ambition. 

(3) Kenan Malik : Go on; explain. 

(4) Bartholomew: Well, I believe there are lots of ways in which 
we can change our welfare state to make it better.
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Inference Anchoring Theory
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Inference Anchoring Theory
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Inference Anchoring Theory
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@ARG_tech ADVANCES IN ARGUMENT MINING – REED & BUDZYNSKA 55 / 94

Inference Anchoring Theory
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Inference Anchoring Theory
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Inference Anchoring Theory
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Inference Anchoring Theory
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Inference Anchoring Theory
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Inference Anchoring Theory
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Inference Anchoring Theory
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Putting Theory into Practice

Example 1

LA: It was a ghastly aberration.
CL: Or was it in fact typical? Was it the product of a policy 
that was unsustainable that could only be pursued by 
increasing repression?
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Putting Theory into Practice
Example 2
MB: What do you think is going on here? If there is an element, if 
you like, of retrospective moral judgements, are there problems 
with that?
LA: I always have a problem of judging the past by our values. It 
seems to me a mixture of arrogance and absurdity.
MB: Okay, Matthew Taylor?
MT: I don't see really what the problem is here. There are three 
people who it seems very likely suffered, they suffered in the 
context of imprisonment possibly, the way they suffered was a 
crime, in almost any jurisdiction in the world it would be seen as a 
crime, they have the opportunity now to try to seek justice, the 
closest they can get to the people who actually committed this is 
the British state, and they're pursuing their case. What's wrong 
with this?
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Putting Theory into Practice

Example 1
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Putting Theory into Practice

Example 2
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PART II
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Mining real world arguments

Most approaches to argument mining use a pipeline:

ADU segmentation
Typed segmentation
Argumentative / argumentatively connected
Relations
Directed relations
Typed relations
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Segmentation

• ADUs similar to EDUs (Peldszus & Stede 2013)
• But need to consider argumentative function (i.e. context)
 Many techniques just default to sentences…
• others are slightly more refined but still only use  

punctuation
• Clausal/punctuation-based segmentation has accuracy 

around 80% 



@ARG_tech ADVANCES IN ARGUMENT MINING – REED & BUDZYNSKA 69 / 94

Challenges for Segmentation

• Unit size ranges from single-word to paragraph:

Yes. 
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Challenges for Segmentation

• Unit size ranges from single-word to paragraph:
Do you agree that governments today should be held 
responsible for crimes of the past?
Yes. There is no statute of limitation on genocide.
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Challenges for Segmentation

• Unit size ranges from single-word to paragraph:
Do you agree that governments today should be held 
responsible for crimes of the past?
Yes. There is no statute of limitation on genocide.

So that reminds me of the story of when I was a little kid. 
There was this...
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Challenges for Segmentation

• Complex argumentative function
If radioactive elements have existed forever, then they 
should have all decayed by now.
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Challenges for Segmentation

• Complex argumentative function
If radioactive elements have existed forever, then they 
should have all decayed by now. But they’re still around, 
so they must have been created.
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Challenges for Segmentation

• Complex argumentative function
If radioactive elements have existed forever, then they 
should have all decayed by now. But they’re still around, 
so they must have been created.

•  Syntactic challenges, e.g. dislocation
Products X and Y because of their toxicity are not 

   allowed in this building. (Saint Dizier, 2012)
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Challenges for Segmentation

• Complex argumentative function
If radioactive elements have existed forever, then they 
should have all decayed by now. But they’re still around, 
so they must have been created.

•  Syntactic challenges, e.g. dislocation
Products X and Y because of their toxicity are not 

   allowed in this building. (Saint Dizier, 2012)
• Indexicality

No I don’t like it hot.
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Challenges for Segmentation

• Complex argumentative function
If radioactive elements have existed forever, then they 
should have all decayed by now. But they’re still around, 
so they must have been created.

•  Syntactic challenges, e.g. dislocation
Products X and Y because of their toxicity are not 

   allowed in this building. (Saint Dizier, 2012)
• Indexicality

Should we go to the beach cos it’ll be hot.
No I don’t like it hot.
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Challenges for Segmentation

• Complex argumentative function
If radioactive elements have existed forever, then they 
should have all decayed by now. But they’re still around, 
so they must have been created.

•  Syntactic challenges, e.g. dislocation
Products X and Y because of their toxicity are not 

   allowed in this building. (Saint Dizier, 2012)
• Indexicality

Do you like hot weather?
No I don’t like it hot.
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Segmentation

• (Ajjour et al. 2017) is more or less state of the art, with F1 
ranging from 0.88 in ideal test-train configurations down 
to 0.55 when handling online discourse.

BiLSTM for IOB labelling; lexical (but not vectorised), 
syntactic and pragmatic features. 
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Typed Segmentation

• Is this segment of a particular type?
• Verifiable/Unverifiable (Park & Cardie, 2014)
• Fact/Policy/Value
• Fact/Opinion (Dusmanu et al., 2017)
• Extraction of claims from Wikipedia using templates 

(Shnarch et al., 2017)

Can merge into or interact with later parts of the pipeline 
particularly (though not exclusively) for extrinsic features.

Typically noisy.
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Connected?

• Is this segment part of the argument or not?
• One solution: Yes
• Another solution: Yes because otherwise it wouldn’t be a  

segment
• A third solution: Yes if we can connect it (at the next step)

• (Some older techniques such as Moens et al., 2007 
treat this as a separate task)
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Identifying Relations

• Attack/Support (Boltužic ́ & Šnajder 2014)
• Support/Nonsupport (Stab & Gurevych 2014)
• Pro/con (Cabrio & Villata, 2012)

• Surprisingly difficult, with surprisingly poor results: 
 F-score 0.5 ± 0.1
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Identifying Relations

• Using argumentative discourse indicators was a common 
starting point:
’because’ is reliable (P ≈ 0.9)
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Identifying Relations

• Using argumentative discourse indicators was a common 
starting point:
’because’ is reliable (P ≈ 0.9) 

… but hopelessly rare (R < 0.1)
  

• In general, only around 20% of argumentative relations 
have explicit marking on the lexical surface (unusual – cf. 
PDTB)
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Identifying Relations

• Using similarity is a common technique.
But similarity is symmetrical so requires an extra task
of identifying directionality.

 
• Different similarity foundations (LDA & threshold; 
 Wordnet sysnet walks; ADW)

• The problem is that similarity isn’t enough.



@ARG_tech ADVANCES IN ARGUMENT MINING – REED & BUDZYNSKA 85 / 94

Identifying Relations

• Even though we know arguments are not trees in general, 
it can be a useful simplifying assumption

 
• Niculae et al. (2017) build (undirected) trees 

(simultaneously with segment typing).
• Lawrence & Reed (2015) build trees using similarity  

distances as a proxy for siblinghood
• Carstens et al. (2014) build AF trees 

• Also a connection with conflict (Wachsmuth et al. 2018)
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Identifying Relations

• More trees but more familiar techniques
• Peldszus & Stede (2015) use MST for tree construction 

(F1 0.50 – 0.75)
• Stab & Gurevych (2017) use ILP for tree construction 

(F1 up to 0.71) 
• Potash et al. (2017) is a nice synthesis using ILP and 

neural techniques and attempts cross-domain 
comparison (though results are poor)
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Typing Relations

• Argumentation schemes
Feng & Hirst (2011); Lawrence & Reed (2015)
Musi et al. (2016)

• As yet no typing of conflict 

• Performance can be high – but only when the number of 
classes is cut or conflated
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Doing everything

• Pipeline – but not
• Persing & Ng (2016) ILP for end-to-end tree construction
• Hand crafted integration (Lawrence and Reed, 2016)
• End-to-end  as dep parsing (Eger et al., 2017)

• Implementations (as web services)
http://margot.disi.unibo.it/ 
http://amf.arg.tech/
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Arguments between people

• Dialogues: more difficult
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Arguments between people

• Dialogues: more difficult … and more to go on

• Preliminary steps in Illocutionary Structure Parsing  
(Budzynska et al., 2016) accuracy 38%-78%

• Some techniques aim to cross monologue and dialogue, 
e.g. Decompositional Argument Mining (Gemechu & 
Reed, 2019) F1 0.62-0.79 but therefore do not exploit 
dialogical priors
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Why bother?

• Argument mining is one of the most challenging  
problems in NLP, combining

Textual entailment
World knowledge
Paraphrase
Dialogue act annotation
Implicature
and more
all with low levels of expensive annotated data

(see Stede and Schneider (2019) for more)
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Why bother?

• Argument mining is applicable to many tasks

Improving writing
Tracking debates
Identifying fake news
Supporting group decision making
Navigating complex arguments
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Why bother?

• Argument mining is applicable in many domains

Jurisprudence 
Intelligence analysis
Pedagogy
Politics
Science
Consumer support ...

and anywhere that uses reasoning expressed in 
language.
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Concluding Remarks

Find out more at
www.arg.tech

Visit the Argument 
Mining Workshop on

Thurs 1st Aug  

Try out the 
Evidence Toolkit at

arg.tech/schoolreport

chris@arg.tech

ARG_tech

ARG_tech

ARGtechOrg

ARG-tech

kasia@arg.tech
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