Dialogue grammar induction

MARK SNAITH
Centre for Argument Technology, University of Dundee, UK
m.snaith@dundee.ac.uk

CHRIS REED
Centre for Argument Technology, University of Dundee, UK
c.a.reed@dundee.ac.uk

This paper presents a foundation for inducing formal dialogue
games from analysed transcripts of real, inter-human
conversations. We describe the DI-Algorithm (Dialogue
Induction Algorithm), that accepts as input transcripts
analysed using the Argument Interchange Format (AIF)
enriched with Inference Anchoring Theory (IAT), from which it
induces a formal, context-free grammar. This grammar
describes the dialogue protocol that was followed in order to
generate the original transcript. To illustrate the DI-Algorithm’s
application, we provide a worked example based on an AIF
analysis of a mock conversation.

KEYWORDS: dialogue games, dialogue protocols, grammar
induction

1. INTRODUCTION

Philosophical dialogue games, such as those proposed by Hamblin
(1970), Walton (1984) and Walton and Krabbe (1995) have been used to
influence computational protocols for argumentative inter-agent
communication (Reed, 1998; McBurney & Parsons, 2002a, 2002b; Black
& Hunter, 2009). These games have traditionally been specified by hand.
This, however, is a process that has two significant drawbacks; first, for
all but the most trivial games it is time-consuming to generate the rules
that define the protocol and account for every possible situation; second,
it is rare for dialogue game specifications to accurately reflect the way in
which real (human) dialogues progress. This second drawback is
particularly relevant to the recent emergence of mixed-initiative
argumentation (Snaith et al., 2010), where the participants in a dialogue
1

can be real, virtual or a mixture of both. For users to remain engaged in a
mixed-initiative dialogue governed by a formal protocol, it is imperative
that permitted moves allow the dialogue to advance in a natural way,
especially in domain-specific scenarios. If we are to model such natural
dialogue flow in an artificial environment, it is essential that we
understand the rules and protocols that are (in many cases
subconsciously) followed in real, everyday dialogues.

Types of natural dialogue vary immensely in terms of both
structure and the rules that govern their flow; contrast, for instance, a
highly strict and formal courtroom setting, with some friends chatting
over coffee. In the former, the rules are largely explicit with all parties
involved strictly abiding by what they can say and when. In the latter, the
structure is much more casual and simply flows based on what has
previously been said. Nevertheless, even in formal settings there are
certain implicit rules and norms that regulate the conversation (e.g. it is
rude to interrupt, you should not suddenly change the topic, questions
should typically be answered etc.).

One method of gaining an understanding of the structure of
natural dialogues in a given domain or setting is to analyse transcripts of
the conversations those dialogues generate. Discourse analysis (or
mapping) involves breaking down individual components of an argument
or other linguistic structure and re-assembling them in a form that shows
the relationship between individual claims and premises (Van Eemeren
et al, 2014). The Argument Interchange Format (AIF) (Chesfievar et al.,
2006) allows for the analysis of the argumentative structure of a
transcript, while Inference Anchoring Theory (IAT) allows this structure
be tied back to the illocutionary acts that generated it (Reed &
Budzynska, 2011).

In this paper, we present a foundation for inducing dialogue
games from analysed transcripts of real inter-human dialogue. We
describe the Dialogue Induction Algorithm (DI-Algorithm) which extracts
sequences of locutions (illocutionary acts and the speakers thereof) from
[AT-analysed transcripts and uses those sequences to learn a dialogue
grammar. The induced grammar consists of production rules that
generate syntactically-valid sequences of dialogue moves, representing
the protocol that was followed to produce the original transcript. We
illustrate the application of the DI-Algorithm by means of a worked
example, based on a simple AIF analysis of a mock conversation.

2. BACKGROUND AND MOTIVATION

2.1 Motivation

In real, inter-human dialogues it is rare that an explicit dialogue protocol
is followed, and instead it is conventions and norms that dictate the flow
of dialogue. Through analysing such dialogues, however, we can expose a
protocol encoded within. Speech Act Theory (Searle, 1969) connects
propositional reports of dialogue events (e.g. “Bob says it is sunny*) via
applications of illocutionary force (e.g. “asserting”) with their
propositional contents (e.g. “it is sunny”). By chaining together the
applications of illocutionary force, we can identify an abstract sequence
of acts that can subsequently be generalised into a dialogue game
representing the encoded protocol (e.g. “asserting” can follow
“questioning”).

Inducing dialogue games from transcripts of real conversations
provides significant benefits both to academia and beyond. As an
example of the former, an analysis of a dialogue game induced from
transcripts of political debates (e.g. the United States presidential
debates) could reveal previously unobserved phenomena that occur in
this particular type of discourse.

Beyond academia, application areas range from social computing
(where software could support more natural dialogues with
mixed-initiative argumentation systems such as Arvina (Lawrence et al,,
2012)), to professional training and development (such as successfully
inducing a dialogue game that models a courtroom dialogue, providing a
training tool for new and existing lawyers).

2.2 Inference Anchoring Theory

Inference Anchoring Theory, IAT (Reed & Budzynska, 2011), provides a
set of mechanisms founded in philosophy and linguistics for connecting
together two perspectives on argumentation: those that focus on
inferential structures and those that focus on inter-agent interactions.
IAT unites three pieces of machinery for understanding, representing,
manipulating, supporting and creating arguments. First, is a lightweight
generalisation of theories of argument macrostructure that identify
components of arguments as (more or less) propositions along with
relationships between those components focusing on inference and
conflict. Second, is an approach to handling discourse structure which
focuses on protocol-governed (i.e. rule-governed) transitions between
discourse moves. Sitting between these two is the third component, a
derivative of speech act theory (Searle, 1969) which connects
propositional reports of dialogue events (such as “Bob says it is sunny”)

3

via applications of illocutionary force (such as “asserting”) with their
propositional contents (such as “it is sunny”). The propositional contents
are the bread and butter of the first, inferential-oriented, component of
IAT; the reports of discourse events are part of the second,
interaction-oriented component of IAT; and the third, illocution-oriented
component of IAT ties them together. As a result, IAT allows us to explain
how an instance of an inference (say from p to ¢) can be anchored in the
transition from an agent’s challenge of ¢ (“why do you think ¢ is the
case?”) to the respondent’s reply (“well, because p”). Thus IAT captures
the intuition that inferences often exist precisely in virtue of the
transition from one dialogue move to another - neither challenging ¢ nor
asserting p are intrinsically arguing anything. It is only by virtue of
asserting p immediately after having ¢ challenged that an inference is
established. IAT provides a precise mechanism for showing how
inferences are anchored in dialogical behaviour.

2.3 Formal grammars and grammar induction

A formal grammar is a set of production rules that allow sentences to be
constructed in a formal language, based on two sets of symbols:
terminals, which cannot be replaced through the application of
production rules; and non-terminals, which are replaced (by terminals
and non-terminals) through applying production rules.

The Chomsky Hierarchy (Chomsky, 1956) is a classification of
different types of formal grammar based on the language they generate
and the restrictions on the form that rules take. Broadly, there are four
levels to the hierarchy, described below where: A and B are
non-terminal symbols; «, 8 and ~ are strings of terminal and/or
non-terminal symbols; and a is a single terminal symbol.

1. Unrestricted languages (also called recursively enumerable), where
production rules have the form o« — (; that is, the string « can be
replaced by the string (.

2. Context-sensitive languages, where production rules have the form
aAB — avyp; that is, the non-terminal A can be replaced by the
string ~ iff A is preceded by the string o and succeeded by the
string S.

3. Context-free languages, where production rules have the form
A — ~; that is, the non-terminal A can be replaced by the string
regardless of the context of A.

4. Regular languages, where production rules have the form A — a
and A — aB; that is, the non-terminal A can be replaced either by

a single terminal, or a single terminal followed by a single
non-terminal.

When written, grammars generally have their rules abbreviated such that
those with the same left-hand side have their right-hand sides expressed
in a single set. For instance, A — {3, v} represents two context-free rules
A— fand A — .

As a simple example to illustrate a formal grammar, consider the
following rules which describe valid short phrases in the English
language, where “_” is a visible space:

S — {ARTICLE_NOUN,S_VERB_PREPOSITION_ARTICLE_NOUN}
NOUN — {cat, hat, mat}

ARTICLE — {a, the}

VERB — {sat,ran}

PREPOSITION — {in,on}

The production rule S describes valid phrases in the language: a sentence
can consist of an article and a noun, or (recursively) a sentence followed
by a verb, a preposition, an article and a noun. Valid phrases in this
language include (but are not limited to):

the_cat

a_mat

the_cat_sat_in_the_hat
the_hat_sat_on_the_cat
a_mat_ran_on_the_cat_sat_on_the_mat

The last sentence illustrates an important principle of formal grammars
— production rules generate syntactically-valid sentences in the language
with no consideration for semantics.

Formal grammars can be used for representing dialogue game
specifications. In this paper, we will provide examples of
context-sensitive grammars that describe dialogue games; one through a
worked example, the others being derived from real data.

2.4 Grammar induction

Grammar induction, sometimes referred to as grammatical inference, is
the process of inducing a grammar based on a set of sentences (alanguage)
that grammar can generate. Duda et al. (2001) provide a simple algorithm
for grammar induction. This algorithm takes a set of training sentences and
returns a grammar that can generate those sentences. Since it is possible
for two or more grammars to generate the same language, such algorithms

5

are sometimes expanded to accept as additional input a set of “negative”
sentences that are known not to be derivable in the grammar. This limits
the potential production rules and thus increases the likelihood of yielding
a unique grammar.

In broad terms, given a set of positive (training) examples D" and
a set of negative examples D, the algorithm takes each sentence in D+
in turn and adds to the grammar the required production rule(s) that
allow that sentence to be generated, provided said rule(s) do not allow a
sentence in D~ to be generated.

This algorithm also imposes two constraints: 1) that the alphabet
(terminal symbols) of the resultant grammar be only those used in the
training sentences; and 2) that every production rule in the grammar is
necessary in order to regenerate the training sentences.

In our approach to dialogue grammar induction we specify an
algorithm that is bound by these constraints, but does not necessarily
yield a only a single grammar and thus does not require a set of negative
examples. We do not impose a uniqueness requirement because it is
possible for some sequences of locutions to be generated by two or more
different dialogue protocols, which in turn are described by different
dialogue grammars. Our intention is to unearth all possible dialogue
grammars from a given training set of sequences.

3. THE DI-ALGORITHM FOR DIALOGUE GRAMMAR INDUCTION

In this section, we present the DI-Algorithm for inducing a dialogue
grammar from transcripts of real conversations. The algorithm takes as
input AIF-IAT analyses of transcripts and generates the production rules
for a context-free grammar that represents a simplified version of the
dialogue protocol.

In common with other grammars, those induced by the
DI-Algorithm consist of both terminal and non-terminal symbols. The
terminals are locutions extracted from the analysed transcripts; the
non-terminals are generated by the induction process when creating the
production rules.

The DI-Algorithm breaks down into a 4-stage process:

1. Locution sequence extraction — from an AIF analysis, extract
sequences of locutions in the order in which they were uttered.

2. Minimal valid sequence identification — for each extracted
sequence, identify minimal non-atomic sequence(s) that are valid
with respect to the transitions in the original sequence.

3. Centre enrichment— find (sub-)sequences in the original sequence
that are expansions of the minimal input (i.e. sequences that enrich
the minimal expansion with further locutions)

4. Rule generalisation — modifying rules to reduce the size of the
grammar by replacing sub-sequences in right-hand sides with the
left-hand sides of rules whose right-hand side is that sub-sequence

We now describe each stage of the process in detail with a running example
to illustrate each concept. We specify sub-algorithms as logic programs for
the sake of brevity.

3.1 Locution sequence extraction

The first stage of inducing a dialogue grammar is extracting sequences of
locutions from an IAT analysis. Consider the following mock conversation
between Alice and Bob, as they discuss what activity they should do:

Alice: We should go to the cinema.
Bob: Why do you say that?

Alice: Because we enjoy watching films.
Bob: We should go to the park.

Alice: Why do you say that?

Bob: Because we enjoy the outdoors.
Alice: OK, we should go to the park.

An analysis of this conversation is shown in Figure 1, with the numbers
representing a simplified representation of AIF timestamps (for clarity,
we omit the full IAT analysis and anchorings which are not relevant for
our purposes). From this analysis, we use the AIF timestamps to extract
the following ordered list, S, of locutions identified by the analyst, where
the subscript denotes the speaker:

S1 = (asserta, challengeg, assert 4, assertg, challenge 4, assertg, concede 4)

This sequence represents a valid dialogue in the protocol whose
grammar we are attempting to induce. To fully illustrate the algorithm,
we will use two other valid sequences, derived from other analyses, in a
set S of three thus:

assert 5, challengep, assert 4, challengeg, assert 4, concedep),
assertz,assertp, assert 4, concedep)

S:
81:
82:
33:

assert o, challengep, assert 4, assertp, challenge 4, assertp, concede 4), }

7

) Asseting P 5 should go 1o the cinema
g — |
— (i i
Alice : We should go 1o the cinema N
| _ | [
Challenging | |
'd |
Defautt Inference |
. J
Bab : Wny should we go to the cinema? A |
3 | Default Conflict
Asserting -
) — = | |
Alice : we enjoy watching films we enjoy watching fiims "__
4
Asserting
— -
I é r
) S — -
— We should go to the park
Bab : We should go to the park - .]
) 5 s jl.
Challenging
S
— Detault inferance
Alice : Wny should we go to the park?
Asserting \
Y
Bob : we enjoy the outdoors we enjoy the outdoars \
\
4 h 1
|
|
Alice : We should go to the park p Conceding

Figure 1 - Example analysis

3.2 Minimal valid sequence recognition

The second stage of the algorithm is to identify minimal valid sequences of
locutions, based on the sequences extracted from the AIF analyses. Given a
sequence S;, the minimal valid sequence S; | is the shortest subsequence of
S; that is non-atomic (i.e. longer than one element) such that the first and
last locutions in §; | are, respectively, the first and last locutions in S;. The
non-atomic condition prevents minimal sequences of only one locution; in
the simplest case, this can arise from a sequence

S; = (assert, challenge, assert). Without the non-atomic condition,

S;, = (assert) because the first and last locutions are the same.

We look for minimal valid sequences in order to identify the
shortest dialogues permitted by the protocol. This is based on the
assumption that, for a given sequence S; = (s1,...,58y), s1 is a valid
starting locution in the protocol and s, is a valid terminating locution.
Identifying the shortest permitted dialogues provides the basis for the
rules of the dialogue grammar.

Minimal valid sequences are established by either starting at the
first locution and working forward through the sequence to find the
closest occurrence of the last locution (front-to-back), or starting at the

8

final locution and working back through the sequence to find the closest
occurrence of the type and speaker of the first locution (back-to-front).

Once again using S; as an example, we first label each locution in
the sequence to provide clarity:

l1: asserty l5 : challenge

lo : challengep
lg : assertp
I3 : asserty

ly : assertp l7 : concedey
The first and last locutions are, respectively, assert 4 and concede 4. The
closet occurrence of asserts to the end of the sequence is locution Is.

Thus in this example the minimal valid sequence is that bounded by I3
and /7 inclusive:

S11 = (assert s, assertp, challenge 4, assertp, concede 4)

Algorithm 1 shows the sub-algorithm used to determine the minimal valid
sequence in a given list using the back-to-front approach.

Algorithm 1 Minimal Valid Sequence determination

% mvs (+Sequence,-MinimalValidSequence)
mvs([X | Y], X | Y]):-
\+ member (X,Y).
mvs([X | T], [X | Y]):-
next_sublist(X, T, S),
mvs([X | 81, [X | Y]).

mvs([X | Y], [X | Y]):-
\+ member(X,Y).

mvs([X | T], [X | Y]):-
next_sublist(X, T, S),
mvs([X | ST, [X | YI).

% next_sublist(+Head,+ListStartingWithHead,-ListWithHeadRemoved)
next_sublist(X, [X | S], S).
next_sublist(X, [_ | T]1, S) :-

next_sublist(X, T, S).

The minimal valid sequences for S; and Ss in the training set are:

9

Sy = (assert, concedep) S31 = (assert, concedep)

Using the minimal valid sequences, we arrive at the following initial
production rules in the induced grammar, where “D” is a non-terminal
start symbol:

| 71 : D — (asserta,assertp, challengea, assertp, concede),
ro 1 D — (asserty, concedep)

3.3 Centre enrichment

The third stage of the algorithm is to identify ways in which adjacent
pairs of locutions can be enriched by inserting sequences between them
to create longer valid sequences. When a pair in a minimal valid sequence
is enriched, a longer valid sequence of locutions is created, representing a
longer dialogue. It is these enrichments that generate the production
rules for the dialogue grammar.

Generating production rules based on enrichments is a two-stage
process; for every enrichment:

1. generate a rule in which the left-hand side is a new non-terminal and
the right-hand side is the (un-enriched) pair

2. for each enrichment of a pair, generate a rule in which the left-hand
side is the same non-terminal and the right-hand side is the enriched
pair

The first step in centre enrichment is to extract each adjacent pair of
locutions from the input sequence. Returning to our example training set,
the adjacent pairs in the sequence

S1: (assert 4, challengep, assert 5, assertp, challenge 4, assertp, concede 4)

are:

p1: (asserty, challengep) pa : (assertp,challengey)
p2 : (challengep, assert) ps : (challenge s, assertp)
ps . (asserts,assertp) pe : (assertp,concede)

Algorithm 2 shows the sub-algorithm for extracting pairs.

Taking each pair in turn sub-sequences of S} are identified which start and
end with, respectively, the first and second locution in the pair. Algorithm
3 shows the sub-algorithm for centre enrichment.

10

Algorithm 2 Pair extraction

% pairs(+Sequence,-[Pairs])
pairs([1,[1).
pairs([_1,[]).

pairs([H, T | 81, [[H, T] | Z]) :-
pairs([T | 81, Z).

Algorithm 3 Centre enrichment

% remove_last(+Sequence,-SequenceWithLastElementRemoved)
remove_last([_], [1).
remove_last([X | Y], [X | T]) :-

remove_last(Y, T).

% enrich(+Pair,+Sequence,-EnrichedPair)
enrich([], [1, [1).
enrich([X, Y], [X | T], S) :-
remove_last([X | T], L),
\+ last(Y, L),
enrich([X,Y], L, S).
enrich([X , Y], [_ | T], 8) :-
enrich([X , Y], T, S).
enrich([X , Y1, X | T], X | T1) :-
last(T, Y).

In the case of Sy, there is only one pair with valid enrichments, ps, with
two in total. These lead to the production rules:

r3 : N1 — (asserta,assertg)
r4 : N1 — (asserta, challengep, assert 4, assertg)
r5 : N1 — (asserta, challengep, assert 4, assertp, challenge a, assertp)

Applying the same process to sequences S; and S; yields the following
production rules:

rg : No —
r7: No —
rg : N3 —
rg : N3 —
r10 : N3 — (asserta, assertp,assert s, concedep)

11

assert 4, challengep)
assert 4, challengep, assert o, challengeg)
assert 4, concedep)

m~ o~~~

assert 4, challengep, assert 4, challengeg, assert 4, concedep)

3.4 Rule generalisation

In their current form, the rules can generate only trivial dialogues, because
the right-hand side of each rule consists only of terminals. The final stage of
the algorithm is to therefore generalise the rules such that, where possible,
sub-sequences of terminals are replaced by non-terminals, allowing rules
to grow and thereby accurately describe the dialogue protocol.

A rule is generalised if a sub-sequence in its right-hand side can
be replaced by the left-hand side of another rule (i.e. a non-terminal). If
there is a production rule r; whose right-hand side is a sub-sequence in
another rule r5’s right-hand side, replace the sub-sequence in r5 with the
left-hand side of r;. For instance, the right-hand side of rule r3 : Ny —
(asserty, assertg) is a sub-sequence of the right-hand side of rule r1g :
N3 — (asserty, assertg, assert 4, concedep).

Thus our final set of production rules, including the start rules, is:

r1: D — (Ny,challenge s, assertp, concede),
T @ D — (Ng),
rg : N1 — (asserta,assertp),
{4/ N1 — (NQ,Nl),
P r5 : N1 — (Na, N1, challenge 4, assertp),
re : No — (assert 4, challengep),
7 N2 — (NQ,NQ),
rg : N3 — (asserty, concedep),
Tg : N3 — (NQ,Ng),
710 N3 — (Nl,Ng)

Following rule generalisation, it is possible to filter the set of rules in
order to eliminate those that can produce the same sequences as other
rules, but are less general. This, however, is a step we don’t yet wish to
implement because we expect propositional content of locutions to have
an impact on the filtration. Since it is our intention to build on the
DI-Algorithm to account for propositional content (see Section 5), we do
not want to introduce any processes that will require significant
modification.

4. RELATED WORK

Here, we briefly compare and contrast our approach to dialogue game
induction with existing work on both dialogue protocol/game induction,
and grammar induction in general.

Similar grammar induction techniques are wused in
(Alexandersson & Reithinger, 1997) and (Geertzen, 2009) to extract

12

dialogue structures from corpus data. In both cases, however, the authors
examined the problem in the context of dialogue act prediction — given a
grammar induced from analysed or marked-up transcripts, how
accurately can that grammar predict the next act in a dialogue using the
same protocol. This differs from the present work which uses dialogue
grammar induction as a step towards inducing an accurate dialogue
protocol. It was further noted in (Geertzen, 2009) that algorithms for
inducing dialogue grammars could be tested against data that has been
annotated by dialogue games. We believe that our work develops a solid
foundation for this by using recent developments in automated dialogue
game execution (the Dialogue Game Execution Platform (Lawrence et al,,
2012)) to generate annotated data against which our induced grammar is
tested.

Grammar induction in general is a significant problem in
computational linguistics and natural language processing. Approaches
to grammar induction are split broadly into the classic machine learning
approaches of supervised and unsupervised induction. In supervised
induction, the algorithm is provided with sets of annotated sentences
from which it learns sentence structure; in unsupervised induction, the
algorithm must learn the structure from scratch (Clark & Lappin, 2010).

A variety of different techniques have been used in unsupervised
grammar induction. In recent years, much work has built on the
generative model of (Klein & Manning, 2002). This model relies on
part-of-speech (POS) annotations, where models are trained using
sequences of POS tags instead of raw tokens of text. An alternative
approach, that parses raw text, is the common cover links (CCL) parser
(Seginer, 2007). This approach, however, is hard to extend (Ponvert et al.,
2011).

Our approach to dialogue grammar induction is set apart from
unsupervised natural language grammar induction by the nature of the
input to the DI-Algorithm. In unsupervised natural language grammar
induction, the aim is to induce a grammar from a set of raw, unannotated
sentences. Dialogue grammar induction, on the other hand, uses analysed
transcripts where the illocutionary acts and speakers thereof are
explicitly identified thus removing the need to first identify the type of
act an utterance represents; in other words, dialogue grammar induction
has already identified the non-terminal symbols (assert, challenge etc.),
with the terminal symbols being the specific locutions complete with
propositional content. In (unsupervised) natural language grammar
induction, it is first necessary to identify those non-terminal symbols
(noun, verb, adjective etc.) based only on the words themselves in the
text.

Our approach does, however, have similarities with supervised

13

natural grammar induction that relies on part-of-speech annotations.
These POS annotations are similar to the identified illocutionary acts in
the transcripts that feed the DI-Algorithm. A key difference is that a
dialogue has clearly defined start and end rules that are used in the
determination of minimal valid sequences that wunderpin the
DI-Algorithm and make dialogue grammars more restrictive than natural
language grammars.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a foundation for inducing dialogue
games from analysed transcripts of real, inter-human dialogues, using
techniques from formal grammar induction. We described and tested the
DI-Algorithm for dialogue game induction. Using dialogical AIF
incorporating Inference Anchoring Theory, the DI-Algorithm extracts
sequences of locutions (illocutionary acts and the speakers thereof) and
uses them as a training set for learning a formal grammar. The grammar
is a simplified representation of the dialogue protocol, whereby the
production rules can verify sequences of locutions that are valid with
respect to the original protocol.

In future work, we will design and implement and framework for
testing the accuracy of the DI-Algorithm. This framework will attempt to
induce a dialogue grammar using data generated from executing existing
dialogue protocols, with the aim being to arrive at a grammars that
accurately reflect those original protocols. Although the test framework is
not yet specified, we envisage that accuracy will be measured based on
false positives and false negatives in the induced grammars.

Further future work will be to further develop the DI-Algorithm
so it can induce grammars not just from sequences of locutions, but also
their propositional content. Achieving this will allow a DGEP-executable
DGDL specification to be generated and, by building on our test framework
proposed above, we can compare this new specification to the original one
used to generate the test data, thus adding an extra step of verification.

What we have done in this paper is provide a foundation for
inducing dialogue games from analysed corpora of real conversations.

ACKNOWLEDGEMENTS: This work was supported by the Leverhulme
Trust under grant number RPG-2013-076. The authors are also grateful
to colleagues in the Centre for Argument Technology for their comments
and feedback on earlier versions of this work.

14

REFERENCES

Alexandersson,]., & Reithinger, N. (1997). Learning dialogue structures from
a corpus. In Proceedings of the Fifth European Conference on Speech
Communication and Technology, EUROSPEECH 1997.

Black, E., & Hunter, A. (2009). An inquiry dialogue system. Autonomous Agents
and Multi-Agent Systems, 19, 173-209.

Chesiievar, C., McGinnis, J.,, Modgil, S., Rahwan, I, Reed, C., Simari, G., South, M,,
Vreeswijk, G., & Willmott, S. (2006). Towards an argument interchange
format. The Knowledge Engineering Review, 21(4), 293-316.

Chomsky, N. (1956). Three models for the description of language. IRE
Transactions on Information Theory, 2, 113-124.

Clark, A., & Lappin, S. (2010). Unsupervised learning and grammar induction.
In Clark, A, Fox, C., & Lappin, S. (Eds.), The Handbook of Computational
Linguistics and Natural Language Processing, pp. 197-220. Wiley-
Blackwell.

Duda, R, Hart, P, & Stork, D. (2001). Pattern Classification. Wiley-Interscience.

Geertzen,]. (2009). Dialogue act prediction using stochastic context-free
grammar induction. In Proceedings of the EACL 2009 Workshop on
Computational Linguistic Aspects of Grammatical Inference, pp. 7-15.

Hamblin, C. (1970). Fallacies. The Chaucher Press.

Klein, D., & Manning, C. D. (2002). A generative constituent-context model for
improved grammar induction. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, pp. 128-135. Association for
Computational Linguistics.

Lawrence, |, Bex, F, & Reed, C. (2012). Dialogues on the Argument Web: Mixed
initiative argumentation with Arvina. In Verheij, B., Szeider, S., & Woltran, S.
(Eds.), Proceedings of the Fourth International Conference on Computational
Models of Argument (COMMA 2012), pp. 513-514, Vienna, Austria. 10S
Press.

McBurney, P, & Parsons, S. (2002a). Dialogue games in multi-agent systems.
Informal Logic, 22(3), 257-274.

McBurney, P,, & Parsons, S. (2002b). Games that agents play: A formal framework
for dialogues between autonomous agents. Journal of Logic, Language and
Information, 11, 315-334.

Ponvert, E. Baldridge,], & Erk, K. (2011). Simple unsupervised grammar
induction from raw text with cascaded finite state models. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics
- Volume 1, HLT '11, pp. 1077-1086, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Reed, C. (1998). Dialogue frames in agent communication. In Demazeau, Y. (Ed.),
Proceedings of the Third International Conference on Multi-Agent Systems
(ICMAS 1998), pp. 246-253, Paris, France. IEEE Press.

Reed, C., & Budzynska, K. (2011). How dialogues create arguments. In van
Eemeren, F. H.,, Garssen, B., Godden, D., & Mitchell, G. (Eds.), Proceedings
of the 7th Conference on Argumentation of the International Society for the
Study of Argumentation.

Searle, J. (1969). Speech Acts. Cambridge University Press.

Seginer, Y. (2007). Fast unsupervised incremental parsing. In Proceedings of
the 45th Annual Meeting of the Association for Computational Linguistics,
Vol. 45, p. 384. Association for Computational Linguistics.

15

Snaith, M., Lawrence,], & Reed, C. (2010). Mixed initiative argument in
public deliberation. In De Cindo, F, Macintosh, A., & Peraboni, C. (Eds.),
Proceedings of the fourth international conference on Online Deliberation

(0D2010), Leeds, UK.
Van Eemeren, F. H., Garssen, B., Krabbe, E. C,, Henkemans, A. F. S., Verheij, B,

& Wagemans, J. H. (2014). Handbook of argumentation theory. Springer
Berlin.

Walton, D. N. (1984). Logical Dialogue-Games and Fallacies. University Press of
America.

Walton, D., & Krabbe, E. (1995). Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. State University of New York Press, New York.

16

