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Abstract
In this paper we look at the manual anal-
ysis of arguments and how this compares
to the current state of automatic argument
analysis. These considerations are used to
develop a new approach combining a ma-
chine learning algorithm to extract propo-
sitions from text, with a topic model to de-
termine argument structure. The results
of this method are compared to a manual
analysis.

1 Introduction

Automatic extraction of meaningful information
from natural text remains a major challenge fac-
ing computer science and AI. As research on spe-
cific tasks in text mining has matured, it has been
picked up commercially and enjoyed rapid suc-
cess. Existing text mining techniques struggle,
however, to identify more complex structures in
discourse, particularly when they are marked by a
complex interplay of surface features rather than
simple lexeme choice.

The difficulties in automatically identifying
complex structure perhaps suggest why there has
been, to date, relatively little work done in the area
of argument mining. This stands in contrast to the
large number of tools and techniques developed
for manual argument analysis.

In this paper we look at the work which has
been done to automate argument analysis, as well
as considering a range of manual methods. We
then apply some of the lessons learnt from these
manual approaches to a new argument extraction
technique, described in section 3. This technique
is applied to a small sample of text extracted from
three chapters of “THE ANIMAL MIND: A Text-
Book of Comparative Psychology” by Margaret

Floy Washburn, and compared to a high level man-
ual analysis of the same text. We show that de-
spite the small volumes of data considered, this
approach can be used to produce, at least, an ap-
proximation of the argument structure in a piece
of text.

2 Existing Approaches to Extracting
Argument from Text

2.1 Manual Argument Analysis

In most cases, manual argument analysis can be
split into four distinct stages as shown in Figure 1.

Text segmentation

Argument /
Non-Argument

Simple Structure

Refined Structure

Figure 1: Steps in argument analysis

Text segmentation This involves selecting frag-
ments of text from the original piece that
will form the parts of the resulting argument
structure. This can often be as simple as high-
lighting the section of text required, for ex-
ample in OVA (Bex et al., 2013). Though in
some cases, such as the AnalysisWall1, this is
a separate step carried out by a different user.

1http://arg.dundee.ac.uk/analysiswall

79



Argument / Non-Argument This step involves
determining which of the segments previ-
ously identified are part of the argument be-
ing presented and which are not. For most
manual analysis tools this step is performed
as an integral part of segmentation: the an-
alyst simply avoids segmenting any parts of
the text that are not relevant to the argument.
This step can also be performed after deter-
mining the argument structure by discarding
any segments left unlinked to the rest.

Simple Structure Once the elements of the argu-
ment have been determined, the next step is to
examine the links between them. This could
be as simple as noting segments that are re-
lated, but usually includes determining sup-
port/attack relations.

Refined Structure Having determined the basic
argument structure, some analysis tools al-
low this to be refined further by adding de-
tails such as the argumentation scheme.

2.2 Automatic Argument Analysis

One of the first approaches to argument mining,
and perhaps still the most developed, is the work
carried out by Moens et al. beginning with (Moens
et al., 2007), which attempts to detect the argu-
mentative parts of a text by first splitting the text
into sentences and then using features of these sen-
tences to classify each as either “Argument” or
“Non-Argument”. This approach was built upon
in (Palau and Moens, 2009) where an additional
machine learning technique was implemented to
classify each Argument sentence as either premise
or conclusion.

Although this approach produces reasonable
results, with a best accuracy of 76.35% for
Argument/Non-Argument classification and f-
measures of 68.12% and 74.07% for classifica-
tion as premise or conclusion, the nature of the
technique restricts its usage in a broader context.
For example, in general it is possible that a sen-
tence which is not part of an argument in one sit-
uation may well be in another. Similarly, a sen-
tence which is a conclusion in one case is often a
premise in another.

Another issue with this approach is the original
decision to split the text into sentences. While this
may work for certain datasets, the problem here is
that, in general, multiple propositions often occur

within the same sentence and some parts of a sen-
tence may be part of the argument while others are
not.

The work of Moens et al. focused on the first
three steps of analysis as mentioned in section 2.1,
and this was further developed in (Feng and Hirst,
2011), which looks at fitting one of the top five
most common argumentation schemes to an argu-
ment that has already undergone successful extrac-
tion of conclusions and premises, achieving accu-
racies of 63-91% for one-against-others classifica-
tion and 80-94% for pairwise classification.

Despite the limited work carried out on argu-
ment mining, there has been significant progress
in the related field of opinion mining (Pang and
Lee, 2008). This is often performed at the doc-
ument level, for example to determine whether a
product review is positive or negative. Phrase-
level sentiment analysis has been performed in a
small number of cases, for example (Wilson et al.,
2005) where expressions are classified as neutral
or polar before determining the polarity of the po-
lar expressions.

Whilst it is clear that sentiment analysis alone
cannot give us anything close to the results of man-
ual argument analysis, it is certainly possible that
the ability to determine the sentiment of a given
expression may help to fine-tune any discovered
argument structure.

Another closely related area is Argumentative
Zoning (Teufel et al., 1999), where scientific pa-
pers are annotated at the sentence level with labels
indicating the rhetorical role of the sentence (criti-
cism or support for previous work, comparison of
methods, results or goals, etc.). Again, this infor-
mation could assist in determining structure, and
indeed shares some similarities to the topic mod-
elling approach as described in section 3.2 .

3 Methodology

3.1 Text Segmentation

Many existing argument mining approaches, such
as (Moens et al., 2007), take a simple approach
to text segmentation, for example, simply splitting
the input text into sentences, which, as discussed,
can lead to problems when generally applied.

There have been some more refined attempts
to segment text, combining the segmentation step
with Argument/Non-Argument classification. For
example, (Madnani et al., 2012) uses three meth-
ods: a rule-based system; a supervised probabilis-
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tic sequence model; and a principled hybrid ver-
sion of the two, to separate argumentative dis-
course into language used to express claims and
evidence, and language used to organise them
(“shell”). Whilst this approach is instructive, it
does not necessarily identify the atomic parts of
the argument required for later structural analysis.

The approach that we present here does not con-
sider whether a piece of text is part of an argu-
ment, but instead simply aims to split the text into
propositions. Proposition segmentation is carried
out using a machine learning algorithm to identify
boundaries, classifying each word as either the be-
ginning or end of a proposition. Two Naive Bayes
classifiers, one to determine the first word of a
proposition and one to determine the last, are gen-
erated using a set of manually annotated training
data. The text given is first split into words and a
list of features calculated for each word. The fea-
tures used are given below:

word The word itself.

length Length of the word.

before The word before.

after The word after. Punctuation is treated as a
separate word so, for example, the last word
in a sentence may have an after feature of ‘.’.

pos Part of speech as identified by the Python
Natural Language Toolkit POS tagger2.

Once the classifiers have been trained, these
same features can then be determined for each
word in the test data and each word can be clas-
sified as either ‘start’ or ‘end’. Once the classi-
fication has taken place, we run through the text
and when a ‘start’ is reached we mark a proposi-
tion until the next ‘end’.

3.2 Structure identification

Having extracted propositions from the text we
next look at determining the simple structure of
the argument being made and attempt to establish
links between propositions. We avoid distinguish-
ing between Argument and Non-Argument seg-
ments at this stage, instead assuming that any seg-
ments left unconnected are after the structure has
been identified are Non-Argument.

2http://www.nltk.org/

In order to establish these links, we first con-
sider that in many cases an argument can be repre-
sented as a tree. This assumption is supported by
around 95% of the argument analyses contained in
AIFdb (Lawrence et al., 2012) as well as the fact
that many manual analysis tools including Arau-
caria (Reed and Rowe, 2004), iLogos3, Rationale
(Van Gelder, 2007) and Carneades (Gordon et al.,
2007), limit the user to a tree format.

Furthermore, we assume that the argument tree
is generated depth first, specifically that the con-
clusion is presented first and then a single line
of supporting points is followed as far as possi-
ble before working back up through the points
made. The assumption is grounded in work in
computational linguistics that has striven to pro-
duce natural-seeming argument structures (Reed
and Long, 1997). We aim to be able to construct
this tree structure from the text by looking at the
topic of each proposition. The idea of relating
changes in topic to argument structure is supported
by (Cardoso et al., 2013), however, our approach
here is the reverse, using changes in topic to de-
duce the structure, rather than using the structure
to find topic boundaries.

Based on these assumptions, we can determine
structure by first computing the similarity of each
proposition to the others using a Latent Dirich-
let Allocation (LDA) model. LDA is a genera-
tive model which conforms to a Bayesian infer-
ence about the distributions of words in the docu-
ments being modelled. Each ‘topic’ in the model
is a probability distribution across a set of words
from the documents.

To perform the structure identification, a topic
model is first generated for the text to be stud-
ied and then each proposition identified in the test
data is compared to the model, giving a similar-
ity score for each topic. The propositions are then
processed in the order in which they appear in the
test data. Firstly, the distance between the propo-
sition and its predecessor is calculated as the Eu-
clidean distance between the topic scores. If this
is below a set threshold, the proposition is linked
to its predecessor. If the threshold is exceeded, the
distance is then calculated between the proposition
and all the propositions that have come before, if
the closest of these is then within a certain dis-
tance, an edge is added. If neither of these criteria

3http://www.phil.cmu.edu/projects/
argument_mapping/
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is met, the proposition is considered unrelated to
anything that has gone before.

By adjusting the threshold required to join a
proposition to its predecessor we can change how
linear the structure is. A higher threshold will in-
crease the chance that a proposition will instead be
connected higher up the tree and therefore reduce
linearity. The second threshold can be used to alter
the connectedness of the resultant structure, with
a higher threshold giving more unconnected sec-
tions.

It should be noted that the edges obtained do
not have any direction, and there is no further de-
tail generated at this stage about the nature of the
relation between two linked propositions.

4 Manual Analysis

In order to train and test our automatic analysis ap-
proach, we first required some material to be man-
ually analysed. The manual analysis was carried
out by an analyst who was familiar with manual
analysis techniques, but unaware of the automatic
approach that we would be using. In this way we
avoided any possibility of fitting the data to the
technique. He also chose areas of texts that were
established as ‘rich’ in particular topics in animal
psychology through the application of the mod-
elling techniques above, the assumption being that
these selections would also contain relevant argu-
ments.

The material chosen to be analysed was taken
from “THE ANIMAL MIND: A TextBook of
Comparative Psychology by Margaret Floy Wash-
burn, 1908” made available to us through the Hathi
Trust.

The analyst began with several selected pas-
sages from this book and in each case generated an
analysis using OVA4, an application which links
blocks of text using argument nodes. OVA pro-
vides a drag-and-drop interface for analysing tex-
tual arguments. It is reminiscent of a simplified
Araucaria, except that it is designed to work in an
online environment, running as an HTML5 canvas
application in a browser.

The analyst was instructed only to capture the
argument being made in the text as well as they
could. Arguments can be mapped at different lev-
els depending upon the choices the analyst priori-
tises. This is particularly true of volumes such
as those analysed here, where, in some cases, the

4http://ova.computing.dundee.ac.uk

same topic is pursued for a complete chapter and
so there are opportunities to map the extended ar-
gument.

In this case the analyst chose to identify discrete
semantic passages corresponding to a proposition,
albeit one that may be compound. An example is
shown in Figure 2. A section of contiguous text
from the volume has been segmented and marked
up using OVA, where each text box corresponds to
such a passage. It is a problem of the era in which
the chosen volume is written that there is a ver-
bosity and indirectness of language, so a passage
may stretch across several sentences. The content
of each box was then edited to contain only ar-
gumentative content and a simple structure pro-
posed by linking supporting boxes towards con-
cluding or sub-concluding boxes. Some fifteen
OVA maps were constructed to represent the argu-
ments concerned with animal consciousness and
with anthropomorphism.

In brief, this analysis approach used OVA as a
formal modelling tool, or lens, to characterise and
better understand the nature of argument within
the texts that were considered, as well as produc-
ing a large set of argument maps. Therefore, it
represented a data-driven and empirically authen-
tic approach and set of data against which the au-
tomated techniques could be considered and com-
pared.

5 Automatic Analysis Results

As discussed in section 4, the manual analysis is
at a higher level of abstraction than is carried out
in typical approaches to critical thinking and argu-
ment analysis (Walton, 2006; Walton et al., 2008),
largely because such analysis is very rarely ex-
tended to arguments presented at monograph scale
(see (Finocchiaro, 1980) for an exception). The
manual analysis still, however, represents an ideal
to which automatic processing might aspire. In or-
der to train the machine learning algorithms, how-
ever, a large dataset of marked propositions is re-
quired. To this end, the manual analysis conducted
at the higher level is complemented by a more fine-
grained analysis of the same text which marks only
propositions (and not inter-proposition structure).
In this case a proposition was considered to cor-
respond to the smallest span of text containing a
single piece of information. It is this detailed anal-
ysis of the text which is used as training data for
text segmentation.
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Figure 2: Sample argument map from OVA

5.1 Text segmentation

An obvious place to start, then, is to assess the per-
formance of the proposition identification – that is,
using discourse indicators and other surface fea-
tures as described in section 3.1, to what extent do
spans of text automatically extracted match up to
spans annotated manually described in section 4?
There are four different datasets upon which the
algorithms were trained, with each dataset com-
prising extracted propositions from: (i) raw data
directly from Hathi Trust taken only from Chap-
ter 1 ; (ii) cleaned data (with these errors manually
corrected) taken only from Chapter 1; (iii) cleaned
data from Chapters 1 and 2; and (iv) cleaned data
from Chapters 1, 2 and 4. All the test data is taken
from Chapter 1, and in each case the test data was
not included in the training dataset.

It is important to establish a base line using the
raw text, but it is expected that performance will
be poor since randomly interspersed formatting ar-
tifacts (such as the title of the chapter as a run-
ning header occurring in the middle of a sentence
that runs across pages) have a major impact on the
surface profile of text spans used by the machine
learning algorithms.

The first result to note is the degree of corre-
spondence between the fine-grained propositional
analysis (which yielded, in total, around 1,000
propositions) and the corresponding higher level

analysis. As is to be expected, the atomic argu-
ment components in the abstract analysis typically
cover more than one proposition in the less ab-
stract analysis. In total, however, 88.5% of the
propositions marked by the more detailed anal-
ysis also appear in the more abstract. That is
to say, almost nine-tenths of the material marked
as argumentatively relevant in the detailed analy-
sis was also marked as argumentatively relevant
in the abstract analysis. This result not only
lends confidence to the claim that the two lev-
els are indeed examining the same linguistic phe-
nomena, but also establishes a ‘gold standard’ for
the machine learning – given that manual analysis
achieves 88.5% correspondence, and it is this anal-
ysis which provides the training data, we would
not expect the automatic algorithms to be able to
perform at a higher level.

Perhaps unsurprisingly, only 11.6% of the
propositions automatically extracted from the raw,
uncleaned text exactly match spans identified as
propositions in the manual analysis. By running
the processing on cleaned data, this figure is im-
proved somewhat to 20.0% using training data
from Chapter 1 alone. Running the algorithms
trained on additional data beyond Chapter 1 yields
performance of 17.6% (for Chapters 1 and 2) and
13.9% (for 1, 2 and 4). This dropping off is quite
surprising, and points to a lack of homogeneity in
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the book as a whole – that is, Chapters 1, 2 and
4 do not provide a strong predictive model for a
small subset. This is an important observation, as
it suggests the need for careful subsampling for
training data. That is, establishing data sets upon
which machine learning algorithms can be trained
is a highly labour-intensive task. It is vital, there-
fore, to focus that effort where it will have the most
effect. The tailing-off effect witnessed on this
dataset suggests that it is more important to sub-
sample ‘horizontally’ across a volume (or set of
volumes), taking small extracts from each chapter,
rather than subsampling ‘vertically,’ taking larger,
more in-depth extracts from fewer places across
the volume.

This first set of results is determined using
strong matching criteria: that individual proposi-
tions must match exactly between automatic and
manual analyses. In practice, however, artefacts
of the text, including formatting and punctuation,
may mean that although a proposition has indeed
been identified automatically in the correct way,
it is marked as a failure because it is including
or excluding a punctuation mark, connective word
or other non-propositional material. To allow for
this, results were also calculated on the basis of a
tolerance of ±3 words (i.e. space-delimited char-
acter strings). On this basis, performance with un-
formatted text was 17.4% – again, rather poor as is
to be expected. With cleaned text, the match rate
between manually and artificially marked propo-
sition boundaries was 32.5% for Chapter 1 text
alone. Again, performance drops over a larger
training dataset (reinforcing the observation above
regarding the need for horizontal subsampling), to
26.5% for Chapters 1 and 2, and 25.0% for Chap-
ters 1, 2 and 4.

A further liberal step is to assess automatic
proposition identification in terms of argument rel-
evance – i.e. to review the proportion of automat-
ically delimited propositions that are included at
all in manual analysis. This then stands in direct
comparison to the 88.5% figure mentioned above,
representing the proportion of manually identi-
fied propositions at a fine-grained level of analy-
sis that are present in amongst the propositions at
the coarse-grained level. With unformatted text,
the figure is still low at 27.3%, but with cleaned
up text, results are much better: for just the text of
Chapter 1, the proportion of automatically identi-
fied propositions which are included in the man-

ual, coarse-grained analysis is 63.6%, though this
drops to 44.4% and 50.0% for training datasets
corresponding to Chapters 1 and 2, and to Chap-
ters 1, 2 and 4, respectively. These figures com-
pare favourably with the 88.5% result for human
analysis: that is, automatic analysis is relatively
good at identifying text spans with argumentative
roles.

These results are summarised in Table 1, below.
For each of the four datasets, the table lists the
proportion of automatically analysed propositions
that are identical to those in the (fine-grained level)
manual analysis, the proportion that are within
three words of the (fine-grained level) manual
analysis, and the proportion that are general sub-
strings of the (coarse-grained level) manual analy-
sis (i.e. a measure of argument relevance).

Identical ±3Words Substring
Unformated 11.6 17.4 27.3
Ch. 1 20.0 32.5 63.6
Ch. 1&2 17.6 26.5 44.4
Ch. 1,2&4 13.9 25.0 50.0

Table 1: Results of automatic proposition process-
ing

5.2 Structure identification

Clearly, identifying the atoms from which argu-
ment ‘molecules’ are constructed is only part of
the problem: it is also important to recognise the
structural relations. Equally clearly, the results
described in section 5.1 have plenty of room for
improvement in future work. They are, however,
strong enough to support further investigation of
automatic recognition of structural features (i.e.,
specifically, features relating to argument struc-
ture).

In order to tease out both false positives and
false negatives, our analysis here separates preci-
sion and recall. Furthermore, all results are given
with respect to the coarse-grained analysis of sec-
tion 4, as no manual structure identification was
performed on the fine-grained analysis.

As described in section 3.2, the automatic struc-
ture identification currently returns connectedness,
not direction (that is, it indicates two argument
atoms that are related together in an argument
structure, but do not indicate which is premise
and which conclusion). The system uses propo-
sitional boundaries as input, so can run equally on
manually segmented propositions (those used as
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training data in section 5.1) or automatically seg-
mented propositions (the results for which were
described in Table 1). In the results which follow,
we compare performance between manually an-
notated and automatically extracted propositions.
Figures 3 and 4 show sample extracts from the au-
tomatic structure recognition algorithms running
on manually segmented and automatically seg-
mented propositions respectively.

For all those pairs of (manually or automati-
cally) analysed propositions which the automatic
structure recognition algorithms class as being
connected, we examine in the manual structural
analysis connectedness between propositions in
which the text of the analysed propositions ap-
pears. Thus, for example, if our analysed propo-
sitions are the strings xxx and yyy, and the auto-
matic structure recognition system classes them as
connected, we first identify the two propositions
(P1 and P2) in the manual analysis which include
amongst the text with which they are associated
the strings xxx and yyy. Then we check to see if P1
and P2 are (immediately) structurally related. For
automatically segmented propositions, precision is
33.3% and recall 50.0%, whilst for manually seg-
mented propositions, precision is 33.3% and re-
call 18.2%. For automatically extracted proposi-
tions, the overlap with the coarse-grained analy-
sis was small – just four propositions – so the re-
sults should be treated with some caution. Preci-
sion and recall for the manually extracted proposi-
tions however is based on a larger dataset (n=26),
so the results are disappointing. One reason is that
with the manual analysis at a significantly more
coarse-grained level, propositions that were identi-
fied as being structurally connected were quite of-
ten in the same atomic unit in the manual analysis,
thus being rejected as a false positive by the anal-
ysis engine. As a result, we also consider a more
liberal definition of a correctly identified link be-
tween propositions, in which success is recorded
if either:

(a) for any two manually or automatically anal-
ysed propositions (p1, p2) that the automatic struc-
ture recognition indicates as connected, there is a
structural connection between manually analysed
propositions (P1, P2) where p1 is included in P1
and p2 included in P2

or

(b) for any two manually or automatically anal-
ysed propositions (p1, p2) that the automatic struc-

ture recognition indicates as connected, there is a
single manually analysed propositions (P1) where
p1 and p2 are both included in P1

Under this rubric, automatic structure recog-
nition with automatically segmented propositions
has precision of 66.6% and recall of 100% (but
again, only on a dataset of n=4), and more signif-
icantly, automatic structure recognition with man-
ually segmented propositions has precision 72.2%
and recall 76.5% These results are summarised in
Table 2.

Automatically
segmented
propositions

Manually seg-
mented propo-
sitions

In separate
propositions

n=4, P=33.3%,
R=50.0%

n=26,
P=33.3%,
R=18.2%

In separate
or the same
proposition

n=4, P=66.6%,
R=100.0%

n=26,
P=72.2%,
R=76.5%

Table 2: Results of automatic structure generation

The results are encouraging, but larger scale
analysis is required to further test the reliability of
the extant algorithms.

6 Conclusion

With fewer than one hundred atomic argument
components analysed at the coarse-grained level,
and barely 1,000 propositions at the fine-grained
level, the availability of training data is a ma-
jor hurdle. Developing these training sets is de-
manding and extremely labour intensive. One
possibility is to increasingly make available and
reuse datasets between projects. Infrastructure
efforts such as aifdb.org make this more
realistic, with around 15,000 analysed propo-
sitions in around 1,200 arguments, though as
scale increases, quality management (e.g. over
crowdsourced contributions) becomes an increas-
ing challenge.

With sustained scholarly input, however, in con-
junction with crossproject import and export, we
would expect these datasets to increase 10 to 100
fold over the next year or two, which will sup-
port rapid expansion in training and test data sets
for the next generation of argument mining algo-
rithms.

Despite the lack of training data currently avail-
able, we have shown that automatic segmentation
of propositions in a text on the basis of relatively
simple features at the surface and syntactic levels
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Figure 3: Example of automated structure recognition using manually identified propositions

Figure 4: Example of automated structure recognition using automatically identified propositions

is feasible, though generalisation between chap-
ters, volumes and, ultimately, genres, is extremely
demanding.

Automatic identification of at least some struc-
tural features of argument is surprisingly robust,
even at this early stage, though more sophisticated
structure such as determining the inferential direc-
tionality and inferential type is likely to be much
more challenging.

We have also shown that automatic segmenta-
tion and automatic structure recognition can be
connected to determine at least an approximation
of the argument structure in a piece of text, though
much more data is required to test its applicability
at scale.

6.1 Future Work

Significantly expanded datasets are crucial to fur-
ther development of these techniques. This will
require collaboration amongst analysts as well as
the further development of tools for collaborating
on and sharing analyses.

Propositional segmentation results could be im-

proved by making more thorough use of syntactic
information such as clausal completeness. Com-
bining a range of techniques to determine proposi-
tions would counteract weaknesses that each may
face individually.

With a significant foundation for argument
structure analysis, it is hoped that future work can
focus on extending and refining sets of algorithms
and heuristics based on both statistical and deep
learning mechanisms for exploiting not just topi-
cal information, but also the logical, semantic, in-
ferential and dialogical structures latent in argu-
mentative text.
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