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Abstract. In certain dialogue protocols, when an agent concedes in-
formation that conflicts with an existing commitment, its opponent can
force it into retracting that existing commitment, as well as other com-
mitments from which the retracted commitment can be inferred. Belief
revision studies how a minimal amount of information can be given up
in the face of new, conflicting information, with prominent theories in
this field being applied belief sets, expressed in propositional logic. While
many dialogue games also find their roots in propositional logic, relatively
recent advances have seen these games adapted for use with systems of
argumentation, which offer more sophisticated models of reasoning and
conflict beyond propositional inference and classical negation. In this pa-
per, we define and describe the properties of two operators for the mod-
ification of a knowledge base in a system of structured argumentation.
We then go on to present a method by which an agent can determine
the minimal change when applying these operators in order to justify
the addition or removal of propositions to bring about consistency in its
commitment store.

1 Introduction

During the course of an argumentative dialogue, a software agent may be forced
into conceding information that conflicts with existing commitments. In certain
dialogue games, the agent’s opponent can then force it into retracting those
original commitments, and if they are a consequence of other commitments,
then those other commitments should also be withdrawn, in what [13] terms
a “stability adjustment”. However, if a commitment is a consequence of several
other commitments working in combination, there will be multiple possible ways
in which the original commitment can be given up. This presents the agent with
the problem of exactly which commitment(s) it should give up.

The field of belief revision aims to answer a related question, in terms of
belief sets: when an agent is required to give up a belief and faces a choice as to
exactly which belief, how it does make the choice? Once of the most influential
theories in belief revision is the AGM theory, which provides a set of postulates
describing valid revisions, contractions and expansions of belief sets [1]. These
three processes are additionally guided by the concept of minimal change, with
“minimal” being measured in terms of epistemic entrenchment — those beliefs
with the lowest degree of entrenchment are more willingly given up [6, 7].



A significant drawback of applying the AGM theory in the context of multi-
agent dialogues is that it only applies to a knowledge base consisting of sentences
in some logical language. While it is true that classic dialogue games find their
roots in propositional logic (to which the AGM theory can be applied), recent
developments (for instance [3]) have seen dialogue games adapted for use with
systems of argumentation, such as the abstract frameworks of [4], which offers a
more sophisticated model of reasoning based on attacks between arguments. A
recent extension to Dung’s work has been to instantiate the abstract approach by
incorporating previous work on structured argumentation to provide arguments
with structure, through the application of strict and defeasible inference rules
to a knowledge base [10]. This in turn has been applied in a dialogical context
in [14].

The ASPIC+ framework of [10] provides structure to arguments through a
logical language which, although left unspecified, can be propositional, provid-
ing a natural link back both to classic dialogue games and the original AGM
theory. It is, therefore, possible to determine an entrenchment ordering over the
knowledge base in an argumentation system, however the question remains as
to exactly how this should be done. ASPIC+ contains partial pre-orders over
the knowledge base and rule set, which in turn are used to create a preference
ordering over arguments that is used in the process of argument evaluation.
However, these preference orderings are both not exhaustive, and they capture
different concepts to an entrenchment ordering. An entrenchment ordering is
used in determining the importance of a belief with respect to other beliefs,
while a preference ordering over arguments is used in the process of evaluation,
in order to determine whether or not one argument defeats another.s

Despite the ability to use a propositional language in [10], the tools and tech-
niques of the AGM theory remain insufficient in exploring minimal change when
carrying out revisions, because additional features such as argument accept-
ability, preferences, contrariness and rules are not accounted for. We therefore
require a new approach to measuring minimal change that takes into account not
only the knowledge base, but also the models of reasoning employed in systems
of structured argumentation.

Connections between argumentation and belief revision have recently found
new momentum [5]. The work of [11, 12, 8] on Argument Theory Change (ATC)
sees belief revision techniques employed to revise an argumentation system when
a new argument is added, such that the argument becomes warranted. However,
ATC does not consider the process of either removing or changing the accept-
ability of an argument, and how minimal change can be determined when doing
so.

In this paper, we describe a method by which a software agent can reason
about the ways in which it can modify the knowledge base in an argumentation
system in order to bring about a change in its commitments in a dialogue. We
do this by taking an initial look at the effects of contracting and expanding
an argumentation system by, respectively, removing formulae from and adding



formulae to its knowledge base. These effects will consider the impact on other
arguments in the system in terms of construction and acceptability.

The paper proceeds as follows; in section 2 we provide a brief introduction
to the system of [10] and to belief revision; in section 3 we briefly describe a
dialogue framework; in section 4 we define, and describe the properties of, our
change operators for argumentation systems; in section 5 we provide an example
and in section 6 we conclude the paper and offer directions for potential future
work.

2 Preliminaries

In this section, we provide a brief introduction to previous work upon which this
paper will build.

2.1 Argumentation

The ASPIC+ framework [10] further developed the work of [2] and instantiates
the abstract approach to argumentation in [4]. The basic notion of the framework
is an argumentation system:

Definition 1. An argumentation system AS = 〈L,− ,R,≤〉 where L is a logical
language, − is a contrariness function from L to 2L, R = Rs ∪ Rd is a set of
strict Rs and defeasible Rd inference rules such that Rs ∩ Rd = ∅ and ≤ is a
partial preorder on Rd.

Remark 1. The contrariness function is represented as p ∈ q, which means “p
is a contrary of q”. Where p and q are contraries of each other (i.e. p ∈ q and
q ∈ p) they are said to be contradictory, which is represented as p = −q.

An argumentation system contains a knowledge base, 〈K,≤′〉 where K ⊆ L
and ≤′ is a partial preorder on K\Kn. K = Kn∪Kp∪Ka∪Ki, where Kn is a set of
(necessary) axioms, Kp is a set of ordinary premises, Ka is a set of assumptions
and Ki is a set of issues.

From the knowledge base (K) and rules (R), arguments are constructed.
For an argument A, Prem(A) is a function that returns all the premises in A;
Conc(A) is a function that returns the conclusion of A; Sub(A) is a function that
returns all the sub-arguments of A; DefRules(A) is a function that returns all
defeasible rules inA; and TopRule(A) is a function that returns the last inference
rule use in A.

On the basis of these functions, A is:

1. ϕ if ϕ ∈ K with, Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) = {ϕ},DefRules(A) =
∅ and TopRule(A) = undefined.

2. A1, . . . ,An → ψ if A1, . . . ,An are arguments such that there exists a strict
rule Conc(A1), . . . Conc(An) → ψ in Rs with Prem(A) = Prem(A1) ∪
. . . ∪ Prem(A2), Conc(A) = ψ, Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An) and TopRule(A) =
Conc(A1), . . . , Conc(An)→ ψ.



3. A1, . . . ,An ⇒ ψ if A1, . . . ,An are arguments such that there exists a defea-
sible rule Conc(A1), . . . Conc(An)⇒ ψ in Rd with Prem(A) = Prem(A1)∪
. . . ∪ Prem(A2), Conc(A) = ψ, Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An) and TopRule(A) =
Conc(A1), . . . , Conc(An)⇒ ψ.

From [10], we write S ` ϕ if there exists a strict argument for ϕ with all premises
taken from S and S |∼ ϕ if there exists a defeasible argument for ϕ with all
premises taken from S.

An argument can be attacked in three ways: on a (non-axiom) premise (un-
dermine), on a defeasible inference rule (undercut) or on a conclusion (rebuttal).

Given an argumentation system AS and a knowledge base KB, an argumen-
tation theory is AT = 〈AS,KB,�〉 where � is an argument ordering on the set
of all arguments that can be constructed from KB in AS. An argumentation
theory is well-formed iff: if φ is a contrary of ψ, then ψ is not in Kn and is not
the consequent of a strict rule.

In this paper, will use propositional logic as the language L and employ
the following notations with respect to an argumentation system AS: KX(AS),
with X ∈ {n, p, a, i}, refers to the specified subset of K; where X is unspecified
(i.e. K(AS)), it is the entire knowledge base that is being referenced. RY (AS),
with Y ∈ {s, d}, refers to the specified subset of R; where Y is unspecified (i.e.
R(AS)), the entire rule set is being referenced; Args(AS) is the set of all ar-
guments; AT AS is the argumentation theory on the basis of AS and AFAS
is the abstract argumentation framework induced from AT AS . For argument
acceptability, we shall use EAS to refer to an extension E in the framework
AFAS , under some unspecified single-extension semantics, subsumed by com-
plete semantics. Finally, Π is a set of infinite length, containing all possible
argumentation systems.

For a rule φ1, . . . , φn ⇒ \ → φ, we will employ the following notations:
Cons(r) = φ, the consequent and Ant(r) = {φ1, . . . , φn}, the antecedents.

Additionally, while it is possible for the rule, contrariness and preferences in
an argumentation system to be modified in order to yield a new argumentation
system, for the purposes of this work we shall focus exclusively on modifying the
knowledge base. This is because the current paper is presenting the first steps
towards a theory of argument revision, with a focus on the arguments themselves.
Rule, contrariness and preference revision will require further significant work,
which is beyond the scope of what we are presenting here.

2.2 Belief revision

Belief revision is the study of how a knowledge base can accommodate new
or conflicting information. The field has been shaped by Alchourrón et. al. [1]
where they proposed the AGM postulates for what they consider to be the three
types of change that can be made to a knowledge base: expansion (denoted
K + Φ), where a new sentence Φ is added to a belief system, K, together with
its logical consequences; revision (denoted K+̇Φ), where a new sentence that is



inconsistent with K is added, but consistency is maintained by removing some
sentences from K; and contraction (denoted K−̇Φ), where a sentence Φ in K
is retracted without adding any new sentences. To maintain consistent closure
under logical consequences, some other sentences may need to be given up.

The main principle of the AGM theory is that of minimal change — when
selecting what, if any, information to change in a belief set, the decision is made
based on what will have the smallest impact on the remaining beliefs. This is
achieved through the use of epistemic entrenchment, where an entrenchment
ordering is placed over beliefs.

3 Dialogue framework

In this section, we present a dialogue framework built on the basis of [10].

A dialogue protocol based on the ASPIC+ framework was previously speci-
fied in [14]. This was defined in terms of towers of meta-argumentation systems;
a meta-argumentation system being an argumentation system that describes an-
other argumentation system, and a tower being a set of these, where the system
ASn describes the system ASn−1. The purpose of this is to allow for discussion
and reasoning about preferences between arguments, although the main prin-
ciples (for instance, the communication language) can equally be applied to a
single system. However, we consider this protocol to have a significant drawback,
in that its claim locution is defined over ASPIC+ arguments and not formulae of
the logical language. Thus if an agent possesses an argument for some conclusion
φ, in order to claim that conclusion it must, on the basis of the definition of an
argument (from [10], as described in section 2), claim its entire argument for
it. This has two disadvantages; the first is that it can result in relatively trivial
dialogues, where one agent claims an argument and his opponent claims another
argument that defeats it — there is no scope for a continued claim-challenge-
defend process, such as those found in other protocols [13]. Secondly, it limits the
scope for producing different argument structures, that aren’t merely a subset
of the combination of the participants’ argumentation systems.

This section proceeds as follows: first, we explain the concept of private and
shared argumentation systems, and their role in a dialogue, before going on
to provide our modified version of the communication language of [14]. Com-
mitment and structural rules are then specified, governing, respectively, how
commitments are modified, and how a dialogue progresses.

3.1 Private and shared Argumentation Systems

Each participant in the dialogue possesses a private argumentation system with
a corresponding well-formed argumentation theory from which their beliefs will
be derived. For a participant α ∈ P (where P is the set of all participants), we
represent this as ASα. Beliefs are derived on the basis of some extension EAS ,
such that Bα = {Conc(A) | A ∈ Args(ASα)}



During a dialogue, the participants will construct a shared argumentation
system (and resultant well-formed theory) based on the moves made. We label
this shared argumentation system as ASD; similarly, the resultant argumenta-
tion theory is labelled as AT D. A superscript is used to refer to ASD or AT D at
a certain time in the dialogue; for instance, ASD at time t = i is ASiD. Ensur-
ing the theory is well-formed places restrictions on the possible dialogue moves,
which we shall leave implicit on the basis of the definition of well-formedness
provided in section 2.

The purpose of the shared argumentation system is to capture the over-
all argument structure generated from the dialogue, and thus it is deductively
monotonic, in that any formula that can be inferred in ASiD can also be inferred
in ASi+1

D . This allows participants to reference formulae (and arguments) that
have previously been retracted. It is possible for a formula to be removed from
the knowledge base in ASD, but only on the condition that it is immediately
replaced with a rule and antecedents that allow an argument for that formula
to still be constructed.

The construction of the knowledge base and set of rules in ASD is closely
connected to commitment. This will be elaborated on in section 3.3 below.

3.2 Communication language

In a dialogue, the participants use a communication language to express locu-
tions.

Definition 2. A communication language LC for an argumentation system AS =
〈L,− ,R,≤〉 is:

– ∀φ ∈ L, claim(φ), why(φ), retract(φ), ground(φ), concede(φ), resolve(φ) ∈
LC

– ∀Φ ∈ 2L, ∀r ∈ R, justify(〈Φ, r〉), accept(〈Φ, r〉) ∈ LC

The two key differences between our language and that of [14] are the format
of the claim locution, and the inclusion of justify, ground and accept.

Our claim is defined over formulae of L, which allows a participant to claim
components of an argument, as opposed to an entire argument itself. The justify
locution allows a participant to provide support for a claim, again without having
to present their entire argument for it, with the accept locution allowing another
participant to accept a justification. In situations where the claim has no support
(i.e. it is an atomic argument), the participant will use the locution ground.

Given the communication language (definition 2) and a set of participants
P, we can now define a dialogue move.

Definition 3. A dialogue move is a tuple, m = 〈id, pl, loc, t〉 where:

– id ∈ N the ID of the move
– pl ∈ P, the participant
– loc ∈ LC , the locution, including its content



– t ∈ N, the target of the move

For notational convenience, we provide each element of a dialogue move with
a corresponding function that, for a move mi, returns the value of that element
in the move: id(mi), pl(mi), loc(mi) and t(mi).

A dialogue consists of a topic, a set of participants and a set of moves.

Definition 4. A dialogue is a tuple D = 〈τ,P,M〉 where:

– τ ∈ L, the topic of the dialogue
– P is the set of participants in the dialogue
– M = {m1, . . . ,mn} is a set of moves, where loc(m1) = claim(τ) and

| M |=|
n⋃
i=1

loc(mi) |

3.3 Commitment rules

We now describe how a participant incurs commitment in our dialogue frame-
work.

A commitment store is a representation of everything to which a participant
has become committed during a dialogue. In our framework, commitment stores
are represented as sets of formulae of the language L used by the participants in
their private argumentation systems, with commitment being incurred through
claims, concessions, justifications and acceptance. Commitments are removed
through retractions.

The following rules describe the commitment store Ciα of a participant α ∈ P
at time t = i in the dialogue (with for all participants C0 = ∅), following a
locution at movemi. The commitment store of a participant who does not make a
move at t = i is the identical to their commitment store at t = i−1; that is, ∀p′ ∈
P\{pl(mi)}, Cip′ = Ci−1p′ . Also, unless otherwise stated, the shared argumentation

system remains unchanged (i.e. ASiD = ASi+1
D ). Where no explicit commitment

rule is provided for a locution, the commitment stores of all participants remain
unchanged.

Our first commitment rule states that if a participant claims a formula, the
participant is committed to that formula. The formula is also placed in the
knowledge base of ASD as an ordinary premise. This is because the formula has
been stated (i.e. it is not assumed), but is not axiomatic.

C1 if loc(mi) = claimα(φ) then:
– Ciα = Ci−1α ∪ {φ}
– Kp(ASiD) = Kp(ASi−1D ) ∪ {φ}

Conversely, if a participant retracts a formula, they are no longer committed
to it.

C2 if loc(mi) = retractα(φ), then Ciα = Ci−1α \{φ}



If a participant concedes a formula to their opponent, they become committed
to that formula.

C3 if loc(mi) = concedeα(φ), then Ciα = Ci−1α ∪ {φ}

The fourth commitment rule describes the commitments incurred when a
participant justifies a previously claimed formula; the participant becomes com-
mitted to the consequent and antecedents of the rule in the justification. Addi-
tionally, all formulae in Φ are added as ordinary premises in K(ASD), while all
unstated antecedents of the rule (i.e. those antecedents that do not appear in
Φ) are added as assumptions (but could subsequently be made explicit through
claims or justifications) . The consequent of the rule is removed from Kp(ASD),
because it is no longer a premise — it is the conclusion of a non-atomic argument.

C4 if loc(mi) = justifyα(〈Φ, r〉), then:
– Ciα = Ci−1α ∪Ant(r) ∪ {Cons(r)}
– Kp(ASiD) = (K(ASi−1D )\{Cons(r)}) ∪ Φ
– Ka(ASiD) = Ka(ASi−1D ) ∪ (Ant(r)\Φ)
– R(ASiD) = R(ASi−1D ) ∪ {r}

The acceptance of a justification has a similar effect on the accepter’s com-
mitments as the justification does on the justifier’s.

C5 if loc(mi) = acceptα(〈Φ, r〉), then Ciα = Ci−1α ∪Ant(r) ∪ Cons(r)

3.4 Structural rules

The structural rules in a dialogue dictate how a dialogue progresses, by restrict-
ing what locutions can be made after other locutions, and what their content
is. For simplicity, our framework will assume only two participants, P = {α, β}.
Turntaking is fully-specified and implicit in the structure of each rule.

Our first structural rule describes what must follow a claim locution. Fol-
lowing a claim by one participants, the second participants must either question
it, claim a contrary or contradictory formula, or concede the claimed formula.

R1 if loc(mi) = claimα(φ), then loc(mi+1) must be either:
– whyβ(φ)
– claimβ(ψ) only if ψ ∈ φ
– concedeβ(φ)

Our second structural rule dictates that when a claim is questioned, it must
either be justified or retracted.

R2 if loc(mi) = whyβ(φ), then loc(mi+1) must be either:
– justifyα(〈Φ, r〉) only if Cons(r) = φ an Φ ⊆ Ant(r)
– groundα(φ) only if φ ∈ K(ASα)
– retractα(φ)



The third structural rule shows a reply to a justify locution — either a claim
of a contrary or undercutting formula, or an acceptance of the justification.

R3 if loc(mi) = justifyβ(〈Φ, r〉), then loc(mi+1) must be either:

– claimα(ψ) only if ψ ∈ Cons(r) or ∃φ ∈ Ant(r) s.t. ψ ∈ φ
– claimα(ψ) only if ψ ∈ A, with r ∈ DefRules(A)
– acceptβ(〈Φ, r〉)

The fourth rule describes the response to a ground location; this is similar
to the response to a claim, except why cannot be used.

R4 if loc(mi) = groundα(φ), then loc(mi+1) must be either:
– claimβ(ψ) only if ψ ∈ φ
– concedeβ(φ)

The fifth rule describes the response to a participant being forced to resolve
its commitment store.

R5 if loc(mi) = resolveα(φ) then loc(mi+1) must be retractβ(φ) if φ ∈ Ciβ

Following a retraction, a participant may immediately either retract another
formula, or make a justify locution; the latter allows the participant to present
an undercutter to the argument whose conclusion they have retracted. Other-
wise, the participant may make any move, provided the dialogue has not termi-
nated.

R6 if loc(mi) = retractβ(φ) then loc(mi+1) must be either:
– retractβ(ψ) only if ψ ∈ Ciβ and ψ is a premise in an argument with

conclusion φ
– justifyβ(〈Φ, r〉) only if Cons(r) = A with Conc(A) = φ and Φ ⊆
Cons(r)

– any other move by β, except in the conditions of R8

When a participant concedes or accepts, its opponent can either force it
to resolve an inconsistency in its commitment store, or make any other move
provided the dialogue has not terminated.

R7 if loc(mi) = concedeα(φ) or loc(mi) = acceptα(〈Φ, r〉) (with Cons(r) = φ)
then loc(mi+1) must be either:
– resolveβ(φ) only if Ciα is inconsistent w.r.t. φ
– any other move by β, except in the conditions of R8

The final rule describes the termination conditions — either a concession or
acceptance of the topic, τ , by the opponent (β), or a retraction by the proponent
(α).

R8 a dialogue terminates at move mi if either:
– loc(mi) = concedeβ(τ)
– loc(mi) = acceptβ(〈Φ, r〉) only if Conc(r) = τ
– loc(mi) = retractα(τ).



4 Revising an argumentation system

If for a participant p ∈ P, at time t = i in a dialogue, Cip is inconsistent, p can
be forced by its opponent to update its commitments in order to resolve the in-
consistency. A commitment store in a dialogue based on ASPIC+ is inconsistent
if it contains two formulae that are either contradictory, or one is the contrary
of the other.

Definition 5. The commitment store Cip of participant p ∈ P at time t = i in

a dialogue is inconsistent if ∃φ, ψ ∈ Cip s.t. φ ∈ ψ and/or ψ ∈ φ in ASp.

Resolving an inconsistency will take the form of a participant removing a for-
mula or formulae from its commitment store through a retraction move. Simply
removing the source of the inconsistency may not, however, be sufficient, because
if that source is the conclusion of an argument that has been rebutted, the com-
mitment store will still contain the premises used to construct that argument
— that is, for some non-atomic argument A with Conc(A) = φ, Cp\{φ} |∼ φ.
Thus, the participant will also need to either retract a commitment that is a
premise of A, or incur a commitment that brings about an exception to a defea-
sible rule in A. Given a choice of retractions or additions, it will be desirable for
the participant to minimise the effect on other commitments and future claims
or justifications it can advance in the dialogue

Assessing the impact of retracting and/or incurring commitments can be
done through the participant examining its private argumentation system. While
the participant may not be explicitly revising its beliefs, techniques used in a
revision process can identify the effects of rendering a belief incommunicable in a
dialogue. In order to describe these effects, we define two functions — formula
removal and formula expansion. While expansion performs a similar role to
its belief revision counterpart, removal is not defined in the original AGM theory.
We shall provide a redefinition of contraction later in this section.

The formula removal function governs the removal of a formula from the
knowledge base of an argumentation system. The knowledge base of the resultant
argumentation system is the same as that of the input system, less the removed
formula.

Definition 6. Formula removal function
AS − φ: K(AS − φ) = K(AS)\{φ}

The formula expansion function governs the addition of a formula to the
knowledge base of an argumentation system. When a formula is added, it is
added to the set of assumptions, because arbitrarily adding information to the
knowledge base, without justification, only assumes that it is true.

Definition 7. Formula expansion function
AS + φ: Ka(AS + φ) = Ka(AS) ∪ {φ}

Remark 2. Note also that because Ka(AS) ⊆ K(AS), K(AS+φ) = K(AS)∪{φ}



We can demonstrate several properties of these operators. Firstly, a removal
will always yield a well-formed argumentation system if the input system is
well-formed.

Proposition 1. If AT AS is well-formed, AT AS−φ, is well-formed

Proof. Since R(AS) = R(AS − φ), we consider only the knowledge base in
AS−φ. If AT AS is well-formed, then K(AS) satisfies [10, Definition 6.8]. Since
K(AS − φ) ⊆ K(AS), K(AS − φ) also satisfies the definition. ut

We can also prove that the formula expansion function is deductively mono-
tonic (that is, no arguments, acceptable or otherwise, are lost in an expansion).

Proposition 2. The formula expansion function, +, is deductively monotonic.

Proof. ∀A ∈ Args(AS), Prem(A) ⊆ K(AS). For some φ ∈ L, K(AS) ⊆
K(AS + φ). Thus, ∀A ∈ Args(AS), Prem(A) ⊆ K(AS + φ).

There is no change to an argumentation system if the input formula to an
expansion is already an assumption in the knowledge base, or if the input formula
to a removal is not in any subset of the knowledge base:

Proposition 3. If for AS + φ, φ ∈ Ka(AS), AS + φ = AS

Proof. Ka(AS+φ) = Ka(AS)∪{φ}. Since φ ∈ Ka(AS), Ka(AS+φ) = Ka(AS).

Proposition 4. If for AS − φ, φ /∈ K(AS), AS − φ = AS.

Proof. K(AS − φ) = K(AS)\{φ}. Since φ /∈ K(AS), K(AS − φ) = K(AS).

It is also the case that a removal can only be “undone” [6] (through expan-
sion) if the input formula was an assumption in the original knowledge base.

Proposition 5. AS − φ+ φ = AS iff φ ∈ Ka(AS)

Proof.

– If φ /∈ Ka(AS), AS − φ = AS. However, φ ∈ Ka(AS + φ), hence AS + φ 6=
AS.

– If φ ∈ Ka(AS), K(AS − φ) = Ka(AS)\{φ}. Ka((AS − φ) + φ) = Ka(AS −
φ) ∪ {φ} = (Ka(AS)\{φ}) ∪ {φ} = Ka(AS)

Similarly, an expansion can only be “undone” (through removal) if the input
formula was not already in any subset of the original knowledge base.

Proposition 6. AS + φ− φ = AS iff φ /∈ K(AS)

Proof. – If φ ∈ Ka(AS), AS + φ = AS. However, AS − φ 6= AS.
– If φ /∈ K(AS), K(AS + φ) = K(AS) ∪ {φ}. K((AS + φ) − φ) = K(AS +
φ)\{φ} = (K(AS) ∪ {φ})\{φ} = K(AS)



A removal or expansion is required to “undo” an expansion or removal be-
cause, in contrast to [9], we are also considering the loss and gain of arguments
themselves and not just their acceptability.

In section 4.1, we describe some further properties of these operators, in
terms of measuring minimal change.

Both the formula removal and formula expansion functions yield new argu-
mentation systems. However, it’s possible that these resultant systems present
the need for further modifications (for instance, if adding a formula causes the
argumentation theory derived from the system to no longer be well-formed)
and, as with the initial retraction, there may be multiple possible modifications,
which again raises the question of which to choose. To model these possible
modifications, we use a structure called a change graph.

In order to define a change graph, we first define a change path:

Definition 8. A change path CP (AS,AS−) = 〈Υ,Ω〉 from AS to AS− is a
rooted tree where:

1. Υ ⊆ Π
2. Ω ⊆ Υ × Υ where ∀ω ∈ Ω such that ω = (AS ′,AS ′′),
| K(AS ′) | − | K(AS ′′) |= ±1 (atomic change).

3. there exists exactly one ω ∈ Ω whose predecessor is the root (AS) and exactly
one ω′ ∈ Ω whose successor is a leaf (AS−).

4. CP (AS,AS−) = 〈Υ,Ω〉 is edge minimal in that @CP (AS,AS−) = 〈Υ ′, Ω′〉
s.t.

⋃
ω′∈Ω′

mod(ω′) ⊂
⋃
ω∈Ω

mod(ω), where mod(ω) is the input formula to the

function (removal or expansion) performed on the edge.

Remark 3. CPA(AS,AS−) = {〈Υi, Ωi〉 | 〈Υi, Ωi〉 is a change path from AS to AS−},
the set of all change paths from AS to AS−

Given a set of change paths, we can now define a change graph:

Definition 9. A change graph CG(AS,AS−) for a change from AS to AS− is
a tuple 〈ΥG, ΩG〉 where given CPA(AS,AS−) = {〈Υ1, Ω1〉 , . . . , 〈Υn, Ωn〉}, ΥG =
n⋃
i=1

Υi and ΩG =

n⋃
i=1

Ωi

If φ /∈ {Conc(A) | A ∈ EAS} and AT AS− is well-formed, AS− is a contrac-
tion of AS by φ; we denote this using the argument contraction operator:
AS−̇φ. A change path from AS to AS−̇φ defines a procedure for revising AS
into AS−̇φ; a change graph captures all edge-minimal procedures for the revi-
sion. Note that AS−̇φ (for any φ ∈ L) is not unique; it describes any argumen-
tation system derived from AS, which contains no acceptable argument for φ
and whose argumentation theory is well-formed.

A change graph shows the ways in which AS can be revised into AS−̇φ;
it does not, however, answer the question of which way should be chosen, with
respect to minimal change, which is what we shall now go on to explore.



4.1 Measuring minimal change

Modifying an argumentation system in order to eliminate all acceptable argu-
ments for a certain conclusion takes one of three forms. Either the arguments for
the conclusion can be completely removed, through removing premises; they can
be defeated by making existing defeaters acceptable, or introducing completely
new defeaters; or a combination of both.

Both removing arguments and modifying acceptability can be achieved by
making changes to the knowledge base — to remove an argument would involve
removing elements from the knowledge base, while adding an argument would
involve adding elements. Making acceptable an existing (unacceptable) defeater
could be achieved through either of these. In the same way that modifying a belief
set (through addition or removal) can have an impact on other beliefs, doing
the same to a knowledge base in an argumentation system can have an impact
on other arguments, aside from the one being removed or added. This impact,
however, is not solely structural when using the ASPIC+ framework; being built
on Dung’s abstract theory, the acceptability of arguments in the framework
is evaluated using various sceptical and credulous semantics. In broad terms,
an argument is acceptable if it is not defeated by other acceptable arguments,
and not acceptable if it is. Arguments can defend other arguments by defeating
defeaters (for instance, an argument A defends an argument C if A defeats B,
which in turn defeats C).

Thus we must consider at least four effects when modifying a knowledge base
— argument loss: those previously acceptable arguments that can no longer
be constructed in the system; acceptability loss: those arguments that remain
in the system, but have become unacceptable; argument gain: new arguments
in the system; and acceptability gain: those arguments that remain in the
system and have gained acceptability.

These effects can be captured by defining functions that take as their input
a formula, and output a set of arguments that are affected. In the following
definitions, ΥG is the set of all argumentation systems in a change graph G, with
Args(ΥG) being the set of all arguments in all argumentation systems in G. We
will leave the type of change (expansion or removal) unspecified, however, in
subsequent sections, we will where necessary make explicit the type of change
with a superscript + (for expansion) or − (for removal).

In a dialogical context, the effects should not be measured by considering
only other commitments, but also in terms of beliefs that are still private. This
is because retracting a commitment will not just impact on existing commit-
ments, but also future potential commitments; for instance, if an agent retracts
a formula φ, any arguments in which φ is a premise are now no longer available to
it. Thus when the following functions are applied to dialogue, they measure the
effects of a revision with respect to the impact on an agent’s private argumen-
tation system and, hence, its beliefs as opposed to only its commitments. They
do, however, still capture the effects on commitments, because its commitment
store can contain beliefs.



In the following definitions, EAS refers to an extension E under some un-
specified single-extension semantics, subsumed by complete semantics.

The first function, the argument drop function identifies those acceptable
arguments that are completely lost when removing or adding a formula.

Definition 10. The argument drop function ∆A:

∆A: L × ΥG → 2Args(ΥG),
∆A(φ,AS) = {A | A ∈ EAS , A /∈ Args(AS ± φ)}

When expanding an argumentation system, the argument drop function al-
ways yields an empty set.

Proposition 7. ∀φ ∈ L, ∆+
A(φ,AS) = ∅

Proof. From proposition 2, + is deductively monotonic. Thus no arguments can
be dropped.

The second function, the acceptability drop function, identifies those argu-
ments that lose acceptability when removing or adding a formula.

Definition 11. The acceptability drop function ∆S:

∆S: L × ΥG → 2Args(ΥG),
∆S(φ,AS) = {A | A ∈ EAS , A /∈ E(AS ± φ, A ∈ Args(AS ± φ)}

The third function, the argument gain function, identifies those arguments
that the system gains when removing or adding a formula.

Definition 12. The argument gain function ΓA:

ΓA: L × ΥG → 2Args(ΥG),
ΓA(φ,AS) = {A | A /∈ Args(AS), A ∈ Args(AS ± φ)}

The argument gain function always yields an empty set in a removal.

Proposition 8. ∀φ ∈ L, Γ−A (φ,AS) = ∅.

Proof. Consider the opposite: A /∈ Args(AS), A ∈ Args(AS)−φ. Thus, Prem(A) 6⊆
K(AS) and Prem(A) ⊆ K(AS − φ). However, KAS − φ) = K(AS)\{φ}, hence
K(A− φ) ⊆ K(AS). Contradiction!

The final function, the acceptability gain function, identifies those arguments
that were unacceptable in the input argumentation system and have remained
in the output system, but have lost acceptability.

Definition 13. The acceptability gain function ΓS:

ΓS: L × ΥG → 2Args(ΥG),
ΓS(φ,AS) = {A | A /∈ EAS , A ∈ EAS±φ}



The drop and gain functions for each type of change (i.e. argument and
acceptability) are linked to each other, in that no arguments (resp. acceptability)
that are dropped are also gained, and vice versa.

Proposition 9. For X ∈ {A,S}, ∆X(φ,AS) ∩ ΓX(φ,AS) = ∅
Proof. Consider the opposite in terms of argument drop and gain: A ∈ ∆A(φ,AS),
A ∈ ΓA(φ,AS). From definitions 10 and 12, A /∈ Args(AS ± φ) and A ∈
Args(AS ± φ) respectively. Contradiction!
Consider the opposite in terms of acceptability drop and gain: A ∈ ∆S(φ,AS),
A ∈ ΓS(φ,AS). From definitions 11 and 13, A /∈ EAS±φ, A ∈ EAS±φ. Contra-
diction!

Propositions 8 and 9 work together in ensuring that any argumentation sys-
tem can be revised with respect to any argument in that system, because we will
always be able to remove propositions (and hence arguments) with no gains.

Having now specified four functions for measuring minimal change, we now
show how to apply them to change graphs in order to determine minimal change.

4.2 Determining minimal change

To use a change graph to determine minimal change, we first assign costs to the
graph’s edges, based on outputs of the functions defined in section 4.1. We do
this through the edge cost function, which takes as input an edge in a change
graph and outputs a vector with the drop and gain functions as its components.

Definition 14. The edge cost function V for a change graph CG(AS,AS−) =

〈ΥG, ΩG〉 where Args(ΥG) =
⋃

AS∈ΥG

Args(AS) :

V : Ω → (2Args(ΥG))4

V ((AS ′,AS ′ ± φ)) =


∆S(φ,AS ′)
∆A(φ,AS ′)
ΓS(φ,AS ′)
ΓA(φ,AS ′)


Keeping the measures separate is important for computing the overall cost

of a change path. Given a change path CP (AS,AS−) in a change graph, we can
compute an overall change vector for that path based on the edge cost functions.
We do this by defining a new operator

⊎
:

n⊎
i=1


∆S(φi,ASi)
∆A(φi,ASi)
ΓS(φi,ASi)
ΓA(φi,ASi)

 =



n⋃
i=1

(∆S(φi,ASi)\
n⋃
j=i

ΓS(φj ,ASj))

n⋃
i=1

(∆A(φi,ASi)\
n⋃
j=i

ΓA(φj ,ASj))

n⋃
i=1

(ΓS(φi,ASi)\
n⋃
j=i

∆S(φj ,ASj))

n⋃
i=1

(ΓA(φi,ASi)\
n⋃
j=i

∆A(φj ,ASj))





The first (resp. third) component captures the overall acceptability drops
(resp. gains) in the path, while excluding those arguments that are re-instated
(resp. dropped), and remain reinstated (resp. dropped). To do this, we consider
the output of the ith acceptability drop (resp. gain) function and remove from
it any arguments that are subsequently reinstated (resp, dropped), which is the
union of all acceptability gain (resp. drop) functions from the ith onwards.

Similarly, the second (resp. fourth) component captures the overall argument
drops (resp. gains) in the path, while exclusing those arguments that are regained
(resp. dropped), and remain in the path (resp. dropped). This is done in the same
way as for the first and third components, except it is with respect to arguments
themselves and not acceptability.

Thus, the overall path cost for a path CP (AS,AS−) = 〈Υ,Ω〉 with Ω =

{ω1, . . . , ωn} is

n⊎
i=1

V (ωi), where V is the edge cost function (Definition 14).

Once a cost has been established for a path, a numeric value is obtained by
considering the cardinality of the union of the components in the cost vector.
These values are then compared to other path cost values to to decide which
path or paths represent the minimal change.

5 Example

In this section, we provide an example that illustrates the internal reasoning
process that assists an agent in selecting what commitment(s) to retract, and
possibly incur, to resolve an inconsistency in its commitment store.

Two agents P = {α, β} are engaged in a dialogue, with the following shared
rules, rule preferences and contrariness:

Rd =


r1 : a⇒ b, r2 : a⇒ c,
r3 : d⇒ e, r4 : f ⇒ g,
r5 : i⇒ j, r6 : j ⇒ k,
r7 : h⇒ ¬r1


r3 < r2 c ∈ e, e ∈ f , h ∈ i, l ∈ b, m ∈ n and b ∈ m

For the purposes of this example, it will be α that carries out an argument
revision process. We will therefore provide a full knowledge base for α and only
a minimal knowledge base for β:

K(ASα) = {a, d, f, i, n} K(ASβ) = {l,m}

α can construct eleven arguments:

A1 : a A2 : d
A3 : f A4 : i
A5 : n A6 : A1 ⇒ b
A7 : A1 ⇒ c A8 : A2 ⇒ e
A9 : A3 ⇒ g A10 : A4 ⇒ j
A11 : A10 ⇒ k



β can construct two arguments, B1 : l and B2 : m.
The grounded extensions of each agent’s private argumentation systems, ap-

plying the weakest link principle [10], are:

– GEASα = {A1,A2,A3,A4,A5,A6, A7,A9,A10,A11}
– GEASβ = {B1,B2}

From the grounded extensions, we derive the agents’ beliefs:

Bα = {a, b, c, d, f, g, i, j, k, n} Bβ = {l,m}

Consider the dialogue fragment below. For the sake of brevity, we shall only
include a why and justify related to the move claim(b), because b will be the
formula with which we illustrate the argument revision techniques.

id (t) participant Locution Target Cparticipant
1 α claim(n) ∅ {n}
2 β claim(m) {1} {m}
3 α claim(b) {2} {b}
4 β why(b) {3} {m}
5 α justify(〈{a}, a⇒ b〉) {4} {a, b}
6 β claim(l) {5} {l,m}
7 α concede(l) {6} {a, b, l}
8 β resolve(b) {7} {l,m}

In the dialogue, α has claimed b and then, when challenged by β, has justified
it with a, placing both a and b into α’s commitment store. β then claims l, which
is a contrary of b and so defeats the argument. α, having no defence against l,
concedes it. β then forces α to resolve his commitment store with respect to b.
To perform this resolution, α must not only remove b, but also either a or claim
h, which introduces an exception to rule a⇒ b. To choose which, α performs an
argument revision process in their private argumentation system.

Consider the outputs of the four functions for a and h, with respect to ASα.

φ ∆A(φ,ASα) ∆S(φ,ASα) ΓA(φ,ASα) ΓS(φ,ASα)
−a {A1,A6,A7} {A3,A9} {} {A8}
+h {} {A6} {A12} {}

With A12 : h.

Adding h, however, generates argumentation system AS+h whose argumen-
tation theory (AT AS+h) is not well-formed, because h ∈ Ka(AS +h) and h ∈ i,
but i ∈ Kp(AS + h). α must, therefore, perform another step in the process,
which will be to assess the removal of i from AS + h:

φ ∆−A(φ,ASα) ∆−S (φ,ASα) Γ−A (φ,ASα) Γ−S (φ,ASα)
−i {A4,A10,A11} {} {} {}
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Fig. 1. Change graph for AS−̇b.

The change graph that results from these processes can be seen in Fig. 1,
with the path costs being as follows:

V ((AS,AS − a)) =


{A1,A6,A7}
{A3,A9}
{}
{A8}


V ((AS,AS + h) ] V (AS + h,AS + h− i) =
{}
{A6}
{A12}
{}

⊎
{A4,A10,A11}

{}
{}
{}

 =


{A4,A10,A11}

{A6}
{A12}
{}


Hence, the numeric costs are:

– −a: | {A1,A6,A7} ∪ {A3,A9} ∪ {A8} |= 6
– +h− i: | {A4,A10,A11} ∪ {A6} ∪ {A12} |= 5

Therefore, adding h to the knowledge base, then removing i represents the
minimal change, and so the dialogue would proceed as follows:

id (t) participant Locution Target Cparticipant
. . . . . . . . . . . . . . .
9 α retract(b) {8} {a, c, l, n}
10 α justify(〈∅, h⇒ ¬r1〉) {8} {a, c, h, l, n}

Note the empty set in the justify locution. This is because α is only assuming
h to be true, thus it remains unstated. Note also that i is not retracted because
it has never been claimed; however, the argument revision process has identified
that if α assumes h to be true, it cannot (rationally) claim i.

This example has illustrated two important principles: firstly, minimal change
is not always represented by the shortest path (w.r.t. number of vertices visited)



in a change graph; the second is that considering argument acceptability plays an
important part in determining minimal change. Removing a would have resulted
in four acceptability changes (three drops and one gain), while adding h and
removing i results in only one. Neglecting these from the determination of the
numeric costs would have resulted in −a: 1; +h − i: 4, hence resulting in −a
being minimal.

6 Conclusions and future work

In this paper, we have presented a method through which a software agent can
reason about retraction of its commitments in a dialogue.

We defined, and proved certain properties of two new operators that describe
changes to the argumentation systems of [10]: removal and expansion. Using
these operators, an agent can reason about possible ways of ensuring that the
conclusion of a rebutted argument can no longer be inferred in its commitments.
This is done through either removing propositions from a knowledge base, and
thus preventing the argument from being constructed, adding propositions to
a knowledge base in order to activate an exception to a defeasible rule in an
argument, or a combination of both.

A structure to model the possible choices, a change graph, was also defined,
where the nodes represented argumentation systems and the edges represented
an atomic removal or addition of a proposition. A cost function assigned to
each edge a measure of the change that took place, in terms of the loss and
gain of both argument acceptability, and arguments themselves. A further new
operator was then defined to combine these edge costs in order to obtain an
overall cost for each path from the original argumentation system, to the goal
system. This operator considered the net effect of drops and gains, so as to
exclude any arguments that were (in terms of both structure and acceptability)
dropped (resp. gained) then subsequently regained (resp. re-dropped).

The work presented here forms part of a larger study into the connection
between belief revision and argumentation, and its role in dialogue. In future
work, we aim to further refine our model for measuring minimal change, by
opening preferences, rules and contrariness to the revision process. We also aim
to investigate the role of different acceptability semantics. In terms of preferences,
we currently assume that all arguments identified by the drop and gain functions
are of equal weight. However, ASPIC+ incorporates a preference ordering over
arguments, which intuitively should influence an agent’s choice when deciding
what propositions to add or remove in a revision process. Acceptability semantics
are divided into two broad groups: sceptical and credulous. An argument that
is sceptically acceptable has gone through a more rigorous process in order to
determine its acceptability, and thus could be considered more important to an
agent than an argument that is “only” credulously accepted.

This paper has demonstrated a core model through which principles of belief
revision can be applied to a system of structured argumentation, using funda-
mental features of the system in the determination of minimal change.
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