
Towards an Argument Interchange Format
for Multi-Agent Systems

Steven Willmott1, Gerard Vreeswijk2, Carlos Chesñevar3, Matthew South4,
Jarred McGinnis5, Sanjay Modgil4, Iyad Rahwan6,5, Chris Reed7, and

Guillermo Simari8

1 Universitat Politècnica de Catalunya, Catalunya, Spain
2 Universiteit Utrecht, The Netherlands

3 Universitat de Lleida, Catalunya, Spain
4 Cancer Research UK, UK

5 University of Edinburgh, UK
6 British University in Dubai, UAE

7 University of Dundee, UK
8 Universidad Nacional del Sur, Argentina

Joint subimission ArgMAS 2006
See (http://x-opennet.org/aif) for previous versions

Abstract. This document describes a strawman specification for an Ar-
gument Interchange Format (AIF) that might be used for data exchange
between Argumentation tools or communication in Multi-Agent Sys-
tems (MAS). The document started life as a skeleton for contributions
from participants in the Technical Forum Group meeting in Budapest
in September 2005, receiving also input from third parties. The results
were subsequentely improved and added to by online discussion to form
a more substantial. In its current form, this document is intended to be a
strawman model which serves as a point of discussion for the community
rather than an attempt at a definitive, all encompassing model. The hope
is that it could provide a useful input to ArgMAS discussion in paricu-
lar on the utility of common Argumentation Interchange Formats, what
form they might take and a potential research / development agenda to
help realise them.

1 Introduction and Background

Argumentation is a verbal and social activity of reason aimed at increasing
(or decreasing) the acceptability of a controversial standpoint for the listener
or reader, by putting forward a constellation of propositions intended to jus-
tify (or refute) the standpoint before a rational judge [22, page 5]. The theory
of argumentation is a rich, interdisciplinary area of research lying across phi-
losophy, communication studies, linguistics, and psychology. Its techniques and
results have found a wide range of applications in both theoretical and practical
branches of artificial intelligence and computer science as outlined in various re-
cent reviews [2, 3, 15, 18]. These applications range from specifying semantics for

2

logic programs [4], to natural language text generation [5], to supporting legal
reasoning [1], to decision-support for multi-party human decision-making [7] and
conflict resolution [20].

In recent years, argumentation theory has been gaining increasing interest
in the multi-agent systems (MAS) research community [16, 17]. On one hand,
argumentation-based techniques can be used to specify autonomous agent rea-
soning, such as belief revision and decision-making under uncertainty and non-
standard preference policies. On the other hand, argumentation can also be used
as a vehicle for facilitating multi-agent interaction, because argumentation nat-
urally provides tools for designing, implementing and analysing sophisticated
forms of interaction among rational agents. Argumentation has made solid con-
tributions to the theory and practice of multi-agent dialogues.

While these efforts have made great progress there remain major barriers
to the development and practical deployment of Argumentation systems. One of
these barriers is the lack of a shared, agreed notation or “Interchange Format” for
argumentation and arguments. The potential benefits of such a format include:

– Providing a convergence point for discussing the syntax and semantics of
argumentation-related agent interaction.

– Provide a common basis for discussing and comparing Argumentation sce-
narios.

– Enabling the development of a variety of compatible tools/systems which
share the same argumentation input/output formats.

– Facilitating the development of agents capable of interaction via argumen-
tation using a shared formalism.

While argumentation mark-up languages such as Araucaria,9 Compendium10

and ASCE11 (see [9] for example) already exist they are primarily a means to
enable user to structure arguments through diagramatic linkage of natural lan-
guage sentences. These mark-up languages are not designed to process formal
logical statements such as those used within multi-agent systems. As a result,
the aim of the Argumentation Interchange Format (AIF) workshop hosted in
Budpest, Hungary in September 2005 was to sketch out a strawman document
that presents an attempt to consolidate, where possible, the work that has al-
ready been done in argumentation mark-up languages and multi-agent systems
frameworks. It is hoped that this effort will provide a convergence point for
theoretical and practical work in this area, and in particular facilitate:

1. Argument interchange between agents within a particular multi-agent frame-
work.

2. Argument interchange between agents across separate multi-agent frame-
works.

9 http://araucaria.computing.dundee.ac.uk/
10 http://www.compendiuminstitute.org/tools/compendium.htm
11 http://www.adelard.co.uk/software/asce/

3

3. Inspection/manipulation of agent arguments through argument visualization
tools.

4. Interchange between argumentation visualization tools.

The remainder of this document provides a first-cut model for such a format
in order that it might form a discussion point in the community.

2 Overall Approach

An Argumentation Interchange Format, like any other data representation, re-
quires a well defined syntax and semantics. The syntax is required as a concrete
representation of statements relating to arguments, and the semantics conveys
the meaning of statements made using the syntax. However, beyond this basic
requirement, there are a wide range of approaches which could be taken for defin-
ing both syntax and semantics. In particular, semantics may be explicit (using
some previous formal notation with its own syntax and semantics) or implicit
(hard coded into a piece of software which subsequently behaves in a given way
for each combination of inputs), machine readable or targeted at a human au-
dience (written notes for human consumption), formal or informal, etc. Further
questions arise as to whether there should be one single AIF format defined,
whether variations should be allowed for, how extensions should be dealt with,
etc. Given this range of possibilities the approach taken in this document adheres
to the following overall principles:

– Machine readable syntax : AIF representations are specifically targeted at
machine read/write operations rather than human level documentation. While
using formats which are human readable is desirable (for example for debug-
ging purposes) the primary aim of the format is data interchange between
software systems.

– Explicit and (where possible) machine processable semantics: The semantics
of AIF statements are to be stated explicitly in specification documents, such
that they may be implemented by multiple tool/system providers. Secondly,
where possible, the nature of the semantic definition should enable the im-
plementation of processing tools such as reasoners (for example using some
existing logical framework).

– Unified abstract model, multiple reifications: the AIF should be defined in
terms of: 1) An abstract model defining the concepts which could be ex-
pressed in an AIF and their relationship to one other, and 2) a set of concrete
reifications / concrete syntaxes which instantiate these concepts in a partic-
ular syntactic formalism (such as XML, Lisp-like S-expressions, etc.). Using
this even if different computational environments require different styles of
Syntax, interoperability may still be facilitated by similarities at the abstract
level.

– Core concepts, multiple extensions: recognizing that different applications
may require statements about a wide array of different argumentation related
concepts, the AIF will be structured as a set of core concepts (those likely to

4

be common to many applications) and extensions (those which are specialist
to particular domains or types of applications). It is anticipated that: A)
the core will evolve over time as consensus changes on what is central and
applications generate experience, and that B) extensions could be generated
by any user of the AIF and, if they turn out to be particularly useful, shared
amongst large groups of users (potentially also being merged into the core).

3 Abstract Model / Core Ontology

The foundation for the AIF model is a set of definitions for high-level concepts
related to argumentation which may need to be represented in the proposed
format. These concepts are gathered into three main groups:

1. Arguments and Argument Networks: the core ontology for argument entities
and relations between argument entities with the purpose of reification in
an AIF (see Section 3.2).

2. Communication: the core ontology for items which relate to the interchange
of arguments between two or more participants in an environment, including
locutions and protocols (see Section 3.4).

3. Context : the core ontology for items associated with environments in which
argumentation may take place. These include participants in argument ex-
changes (agents), theories contained in the environment that are used for
argumentation, and other aspects which may affect the meaning of argu-
ments/communication of arguments (see Section 3.5).

In the next subsections an overview of the above concepts is given. Definitions
are drawn from existing theories when possible, but may diverge where alignment
between theories is needed. Items unique to argumentation (such as the notion
of an “argument” itself) are naturally treated in greater depth than items for
which more general definitions are already available (such as the notion of an
“agent” for example). The relationships between these groups of concepts are
shown in Fig. 1.

3.1 The Notion of Argument

Before proceeding with these definitions, it is worth noting that we will not
take a position on the precise definition of the notion of “argument” itself, even
though later sections do provide structures for describing argument. The reason
for this is that initially we found it too difficult to select a single definition
acceptable to all. We contend that progress on such a definition might be better
made once some consensus is reached on the necessary lower level concepts. A
useful starting point for understanding philosophical notions of arguments can
however be found in David Hitchcock’s input to the original AIF meeting.12

12 http://www.x-opennet.org/aif/Inputs/aif2005_david_hitchcock_1.pdf

5

Refers-to / Manipulates
Communication
(Locutions/
Protocols)

Argument
Networks
(Arguments/
Relations)

Context
(Participants/
Theory)

Drives

Manipulates

Constrains

Constrains

Influences

Fig. 1. Overview diagram of main groups of concepts defined by the AIF Core Ontology

3.2 Arguments / Argument Networks

The following section defines the top level concepts to be considered for an
ontology of arguments and relationships between arguments.

Concepts and Relations: The starting point of this section is the assump-
tion that argument entities can be represented as nodes in a directed graph
(di-graph). This di-graph is informally called an argument network (AN). An
example of an AN is displayed in Fig. 3. This figure will be described later,
in Sec. 3.3. The rational for not to restrict ourselves to directed acyclic graphs
(DAGs) or even trees is that argumentation formalisms vary to a great extent.
A number of formalisms allow for cycles where others forbid them explicitly.
One of our basic assumptions is that the core ontology should cater for these
differences, and should be able to capture extreme cases.

Nodes: There are two kinds of nodes, namely, information nodes (I-nodes) and
scheme application nodes or scheme nodes (S-nodes) for short (see Fig. 2). Note
that one alternative for “scheme node” could be “application node”. However,
the meaning of “application” is not precise, neglecting the scheme connotation.

Whereas I-nodes relate to content and represent claims that depend on the
domain of discourse, S-nodes are applications of schemes. Such schemes may
be considered as domain-independent patterns of reasoning (that resemble rules
of inference in deductive logics but broadened to non-deductive logics and not

6

Fig. 2. Concepts and relations for an ontology of arguments

restricted to classical logical inference). The present ontology deals with two dif-
ferent types of schemes, namely inference schemes and attack schemes. Poten-
tially scheme types could exist, such as evaluation schemes and scenario schemes,
which will not be addressed here.

If a scheme application node is an application of an inference scheme it is
called a rule of inference application node (RA-node). If a scheme application
node is an application of a preference scheme it is called a preference applica-
tion node (PA-node). Informally, RA-nodes can be seen as applications of rules
of inference while PA-nodes can be seen as applications of (possibly abstract)
criteria of preference among evaluated nodes.

Node Attributes: Nodes may possess different attributes such as “title,”
“text,” “creator,” “type” (decision, action, goal, belief), “creation date,” “eval-
uation” (or “strength,” or “conditional evaluation table”), “acceptability,” and
“polarity” (values either “pro” or “con”). These attributes may vary and are
not part of the core ontology. The term “conditional evaluation table” is in-
spired by its Bayesian analogon named “conditional probability table” (CPT).
Most attributes are proper, that is, essential to the node itself, while others are

7

derived. In this example, all attributes except “acceptability” are proper. It is
imaginable that a derived attribute such as “acceptability” may be obtained
from node-specific attributes through calculation. In this case, “acceptability”
may be obtained from “evaluation” through mechanical inference.13

Edges: Let us analyze the notion of support. In the context of a graph repre-
senting argument-based concepts and relations, a node A is said to support node
B if and only if an edge runs from A to B. This rather broad notion of sup-
port turns out to be remarkably convenient in discussions on argument ontology.
Alternative terminology, more akin to graph-theory is “children of”.14

1. Every node (i.e., every I-node and every S-node) can be supported by zero
or more S-nodes.

2. Every S-node can be supported by zero or more I-nodes.

Edges do not need to be explicitly marked, labelled, or otherwise supplied
with semantical pointers. A very practical example showing this would be an
“edge table” representing edges between nodes. Besides an OID (object iden-
tifier) column, such an edge table does not need more than two columns: a
from oid field, denoting the OID of the source node, and a to oid field, denot-
ing the OID of the sink node.

If desired, edge types can be inferred from the nodes they connect. Basically
there are two types of edges, namely scheme edges and data edges. Scheme edges
emanate from S-nodes and are meant to support conclusions. These conclusions
may either be I-nodes or S-nodes. Data edges emanate from I-nodes, necessarily
end in S-nodes, and are meant to supply data, or information, to scheme appli-
cations. In this way, one may speak of I-to-S edges (“information,” or “data”
supplying edges), S-to-I edges (“conclusion” edges) and S-to-S edges (“warrant”
edges). Table 1 summarizes the relations associated with the semantics of sup-
port. Notice that I-to-I edges are forbidden, as will be discussed further on in
this section.

To distinguish scheme edges from data edges in diagrams, edges that emanate
from S-nodes may be supplied with a closed arrowhead at the end, while edges
that emanate from I-nodes may be supplied with an open arrowhead at the end.
Edges fall into different categories, such as support edges (that are associated
or “colored” by the scheme of the S-node they are connected to; for S-to-S
edges, the nodes that they emanate from), inference edges (those edges that are
connected to an RA-node, shown in black in Fig. 3), and attack edges (edges

13 There are voices that advocate to drop derived node attributes altogether, for differ-
ent algorithms may assign different statuses to arguments within one and the same
argument network.

14 Note however that the term support could be misleading when applied to preference
application nodes, as preference application is intuitively associated with concepts
such as negation, counterargument and preference. In such cases it may help to think
of negative support.

8

to I-node to RA-node to PA-node

from I-node data/information used
in applying an
inference

data/information used
in applying a
preference

from RA-node inferring a conclusion
in the form of a claim

inferring a conclusion
in the form of a
scheme application

inferring a conclusion
in the form of a
preference application

from PA-node applying preferences
among information
(goals, beliefs, ..)

applying preferences
among inference
applications

meta-preferences:
applying preferences
among preference
applications

Table 1. Semantics of support.

that are connected to an PA-node, shown in red in Fig. 3).15 Marking edges and
applying arrowheads to edges is not part of the ontology but only meant to help
human beings in its interpretation.

Constructions that are not permitted: The ontology is flexible enough
to allow for exceptional constructions. Still, it does not account for a number
of artifacts. The following list shows a number of constructions that are not
accommodated for in the present ontology:

1. I-nodes cannot be linked to other I-nodes. The reason for this restriction
is that I-nodes cannot be connected without explaining why the connection
is being made. There is always a reason, scheme, justification, inference, or
rationale behind a relation between two or more I-nodes.

2. S-nodes may not be employed as I-nodes. Notice that it is difficult to find a
compelling example that would justify the use of an S-node as an I-node. A
possible example could be “But previously you said that items that look red
generally are red, so in the same way I say here that items that look like an
apple generally are an apple”. In these cases, it seems that it is not really a
scheme application that is being used as an I-node-like premise, but rather
something slightly different. Also, rather than using an S-node as an I-node,
it seems more plausible to re-apply the scheme used for that S-node to create
a new S-node.

Derived concepts: Concepts from an extension ontology, in particular con-
cepts such as rebut, undercut, defend, and defeat can in principle be derived
from the concepts in the diagram that is displayed in Fig. 2. Thus, an argument
qualified with derived concepts can in principle be described in terms of basic
concepts in a mechanical manner. Nevertheless, such derived concepts may still

15 Note that in the color printed version of the document different colors are visible for
edges for clarity – however, they are not essential to intepretation.

9

Fig. 3. Sample argument network.

have an important place that should be respected by their inclusion in an ex-
tension ontology that we might call “derived concepts” (see further discussions
in Section 5).

3.3 Examples

This section presents three examples: an abstract example that shows most of
the features of the ontology, a translation of Toulmin’s scheme, and a simple
concrete example.

Abstract example of an argument network: An abstract example of an
argument network is displayed in Fig. 3. This network contains eleven I-nodes,
namely I-node1 , . . . , I-node11 and six rule application nodes, namely RA-node1,
RA-node2, RA-node3, RA-node4, PA-node1, and PA-node2. This abstract ex-
ample is meant to demonstrate the flexibility of the core ontology, stretching the
limits of the model. Obviously, most existing argument formalisms would not
support the constructions shown in this example. Some observations that can
be drawn from the diagram:

1. The main claim is supported by two inference applications and two attack
applications.

10

2. Scheme-to-conclusion (SC) edges are drawn with an arrowhead, while premise-
to-scheme (PS) edges are drawn without arrowheads. This is for two reasons.
The first reason is to distinguish PS from SC edges. The second reason is to
disambiguate direction when two S-nodes are connected by an SC edge (no-
tice the SC-edge from RA-node4 to RA-node2). The arrowhead distinction is
for diagrammatic purposes only, and it has no added value for representation
and interchange formats.

3. I-node4 shows that our model allows for multiple node references. Thus,
nodes may be referred to more than once. In particular, an argument network
(AN) need not be a tree.

4. The two inference applications

I-node2, I-node3 −(RA-node1)→ I-node1 (main claim)
I-node1, I-node6, I-node7 −(RA-node3)→ I-node2

show that cycles in theory may occur.
5. If I-nodes are attacked, then the premises connected to the intermediate

PA-node are called rebutters. For example, I-node1 is rebutted by I-node4
and I-node-5 through PA-node-1 and PA-node-2, respectively. These are two
independent rebutters.

6. If RA-nodes are attacked, then the premises connected to the intermediate
PA-node are called undercutters. For example, RA-node1 is undercut by I-
node12 through PA-node3. In general, every type of node may be attacked,
including attack nodes themselves. The diagram does not contain an instance
of the latter.

Argumentation à la Toulmin. Example: Toulmin’s scheme as depicted in
(Eq. 1) is constituted of six essential elements, namely data (D), warrant (W),
backing (B), qualifier (Q), rebuttal (R) and claim (C). A (somewhat liberal)
translation is displayed in Fig. 4. The shadow-encircled nodes together relate to
the original backing B.

D −→ Q,C
| |

since W unless R
|
B

(1)

Notice that in Fig. 4, R (rebuttal) attacks C (claim) rather than W (warrant).
It is not clear from “The Uses of Argument” [21] whether R should attack C or
W . Since an attack on C is called a rebuttal, and since an attack on W is called
an undercutter in our terminology, we have chosen the one which is consistent
with it. Nevertheless, R can reasonably be taken to attack C, to support not-C,
to attack W , or to attack an implicit warrant (the dots). This document does not
advocate a mechanism for translation but merely that any of those translations
should be representable in the present ontology.

11

Fig. 4. Toulmin scheme.

A concrete and simple example: In Fig. 5 we show a concrete and simple
example of an argument network for handling the well-known AI example of
modelling the flying abilities of birds and penguins, and reasoning about whether
a particular penguin opus can fly. In this case there are two arguments, one for
fly(opus) and one for ~fly(opus).

Fig. 5. Concrete example of an argument network.

The argument for ~fly(opus) is composed of one scheme-application, namely
Modus Ponens (MP). A simplistic version of MP reads as follows: if there are
two information nodes A(x) and A(x)->B(x) then conclusively infer B(x). The
argument for fly(opus) is composed of one scheme-application, namely defeasi-
ble Modus Ponens (dMP). A simplistic version of dMP reads as follows: If there
are two information nodes A(x) and A(x)-(qualifier)->B(x) then defeasibly

12

infer B(x). The conflicting nodes fly(opus) and ~fly(opus) are related by a
PA-node that says that the argument against fly(opus) is conclusive and there-
fore preferred over the argument for fly(opus). This PA-node is an instance of
a more general scheme saying that deductive arguments always win out over
non-deductive arguments.

3.4 Communication: Locution / Protocols

The second group of concepts identified in discussions are those which concern
communication in the context of argumentation, for example, concepts which
capture:

– The utterance of a statement containing an argument or argument network
by an agent.

– A sequence of legal statements making reference to arguments/argument
networks which could be made by a set of agents in order to make a decision
or reach some other goal.

In turn, as with arguments / argument networks, communication also takes
place in a context –elements of which may affect the interpretation of statements
(such as references to the participants in a dialogue, the ontologies applying, the
semantic models adopted etc.). Presentation here is initially split into two parts:

– Locutions: individual words, phrases or expressions uttered by an agent.
– Interaction Protocols: sequences of locutions involving one or more (usually

at least two) agents and usually designed to achieve a specific goal (such as
reaching an agreement or giving information).

Hence locutions form the basic building blocks of protocols. It is important
to note however that there are different “schools of thought” on how the se-
mantics for locutions and protocols should be defined in terms of one another.
One approach, such as FIPA ACL [6], holds that semantics are attributed to
individual locutions –and the semantics of a protocol are a compound of the
semantics of individual locutions. Another approach holds that the semantics of
locutions vary depending on their context (e.g. the commitments made thus far)
and hence their place in a particular protocol [11].

Locutions: A rich literature exists on locutions of various types and their se-
mantics. In terms of general agent communication, languages such as FIPA-ACL
and KQML define sets of general locutions such as inform, request, query, tell
and so on –each with an associated formal logical semantics. However, while
these languages may provide useful resources, it is also clear from more spe-
cific argumentation literature that the types of locutions which occur frequently
are more specific / different to those found in FIPA-ACL / KQML. Examples
include: assert, accept, challenge, question, concede, and prefer.

13

While different authors use different labels for different locutions, there seem
to often be similarities in semantics. Work such as that by McBurney, Parsons
and Wooldridge [14], McBurney and Parsons [13], Maudet and Chaib-draa [10]
and Mcburney, Hitchcock, and Parsons [12] provides a starting point for poten-
tially determining a limited number of locutions which could form the core of
an AIF, others potentially being added as extensions. In this setting, at a more
general level however an AIF core ontology should usefully define the notions of:

– Locution: the notion of a locution, and its associated properties, which might
include (taken from the FIPA-ACL message structure specification [6]):16

- Sender : the agent uttering a locution (note that a distinction could also
be made between the sender who makes and utterance and the origi-
nator(s) – an agent or group of agents responsible for generating the
utterance.)

- Receiver or Receivers: Agents “hearing” an utterance (distinctions could
be made between intended recipients, those intentionally made aware of
the message but not the intended recipients and those who unintention-
ally become aware of an utterance).

- Ontologies: the ontologies which hold and define elements of the content.
- Language: the content language used in the content part of the message

(which should itself have a formal semantics).
- Protocol : the protocol a locution is part of.
- Content : the object of the locution.
- Message management elements: items such as a message-identifier, a

conversation-identifier, in-reply-to field etc.
– Individual Locutions: potentially a set of subclasses of the class of locutions

which capture individual locutions such as those listed at the beginning of
this section.

Interaction Protocols: It is possible to construct comprehensive standards of
language usage for computational systems that are widely used and relatively
precise. This is the case for programming language standards (such as Prolog,
dialects of ADA, etc). By contrast, in areas where standardization of more
abstract concepts is required, consensus appears to be much harder to achieve,
because abstract concepts are difficult to pin down uniquely in a simple way.
In this circumstance it is often expedient to define precisely a core standard,
containing only those elements essential to getting the job done, and then allow
extensions to this core in a controlled (but perhaps less precise) way. An example
of this form of standardization is the Process Interchange Format (PIF) which
is a standard for describing processes. The PIF core contains a small number of
very generic concepts at the heart of that standard and then allows those with
specific process description needs to meet their own requirements by building on
that core.
16 Note that additionally one could add a slot for semantics which points to the defined

formal semantics for the locution.

14

Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or number

Fig. 6. LCC syntax

The definition of a interaction protocol language as part of an argument
interchange format provides a number of advantages. If the language can be used
for computation then the standard is, effectively, a programming standard and
history suggests that such standards tend to be durable because they connect
to practice (or fail to connect and then die cleanly). If it is also declarative –
and hence independent of current fashion in low level implementation languages
or basic communications protocols– then it can support formal analysis and
verification more readily. In addition, the use of a high level language arguably
facilitates human readability. For software engineers there is a natural notion of
pattern in the design of protocols and this is one approach to extension from a
core protocol syntax to a (more interesting) set of extensions via patterns.

Protocols are an area where traditional computer science helps supply stan-
dards. For example, Figure 6 defines the syntax of the Lightweight Coordination
Calculus (LCC) that uses a combination of traditional specification drawn from
CCS and logic programming (for details on LCC see [19]). An interaction model
in LCC is a set of clauses, each of which defines how a role in the interaction
must be performed. Roles are described by the type of role and an identifier for
the individual agent undertaking that role. The definition of performance of a
role is constructed using combinations of the sequence operator (‘then’) or choice
operator (‘or’) to connect messages and changes of role. Messages are either out-
going to another agent in a given role (‘⇒’) or incoming from another agent in
a given role (‘⇐’). Message input/output or change of role can be governed by
a constraint defined using the normal logical operators for conjunction, disjunc-
tion and negation. Notice that there is no commitment to the system of logic
through which constraints are solved –on the contrary, we would expect different
agents to operate different constraint solvers. Hence the standardization in LCC
is on the generic language for describing interaction (only) and in this sense it
is “core”. It also has the added benefit of having a style of description that is

15

close to computation –in this case quite close to logic programming (despite the
process operators) where we already have a successful ISO standard.

3.5 Context: General Context / Participants / Theory

The third group of concepts in the ontology is that of elements which form
the context in which argumentation takes place. In keeping with the distinction
already made between concepts for communication and those for arguments /
argument networks, concepts related to context may also be usefully grouped
into these two areas.

Communication Context: Here, context captures information relevant to
argument-based dialogues. These include:

– Participants: We may require references to agents taking place in the dia-
logue, possibly including:
1. Participant ID: an identifier for a participant.
2. Participant role: the role of the participant in relation to the dialogue

(e.g. pro, con, persuader, buyer, seller, etc.). This may influence the way
dialogue proceeds.

– Dialogue topic: This refers to the main issue under discussion (e.g. the ques-
tion under enquiry, or resource under negotiation).

– Dialogue type: a reference to the type of the dialogue (e.g. persuasion, ne-
gotiation [23]). This can be simply a name, or it can be a pointer to more
elaborate dialogue typology.

– Background theory: This includes statements that participants agree upon
(e.g. legal rules), and which may be used to construct arguments within the
dialogue.

– Commitment stores: This is a data structure that allows agents to add and
remove commitments during their dialogues [8].

– Commitment rules: These are rules that specify how dialogue participants
may modify the content of commitment stores.

Argument Network Context: Here, context captures information relevant
to the interpretation and processing of the argument network.

– Argumentation theory rules: These are the rules that specify the way argu-
ments are constructed and interpreted. In a way, they represent the under-
lying formal argumentation theory. These include:
1. Inference rules: These can be thought of as the specifications of the types

of inference application nodes that can be used in the argument network.
2. Preference rules: Similarly, these can be thought of as the specifications

of the types of preference application nodes that can be used in the
argument network.

16

– Background theory: This includes statements taken for granted (e.g. legal
rules), and which may be used to interpret or process arguments.

– Domain ontologies: One could add references to ontologies that may be used
to interpret argument networks. For example, suppose an argument network
represents claims and justifications of the medical properties of a particular
drug. In order to process these arguments automatically, we may benefit from
a specialized medical drug ontology while interpreting these arguments.

4 Reifications

Reifications of the concepts defined in the AIF are concretizations from abstract
to more concrete definitions. In particular the primary use of reifications in AIF
is to define concrete syntaxes which can be unambiguously serialized and de-
serialized for transmission between two communicating participants exchanging
arguments or between two software tools using the AIF:

– More than one reification may exist.
– Two different reifications may not be interoperable. That is, serializers for

one reification may produce output which is not readable by parsers for
another.

– While individual reifications will each aim to capture the semantics of the
concepts defined in the AIF ontologies, they may also be influenced by the
semantics of the encoding language used. Hence minor semantic differences
as well as syntactic differences may arise.

A simple example of what is meant by a reification can be seen in the AIF
input document by Willmott, Fox and Reed to the original AIF event.17

5 Conclusions and Open Issues

As described in the introduction, the development of an AIF is a highly chal-
lenging endeavor and this document is intended as a discussion starter and not
a fully fledged proposal. Further, as noted in Section 3.2, the current model
may well not capture all types of argumentation that are of interest. Specific
significant open issues which arose during discussion included:

1. Currently no distinction is being made for AIF formalisms which might be
used in GUI/Tool import-export type application and those which might be
used in agent-to-agent communication. While the core concepts may be the
same it remains an open issue as to whether one format can really adequately
cover both cases.

17 http://x-opennet.org/aif/Inputs/aif2005_steven_willmott_2.pdf

17

2. Given the potential richness of the communication concepts ontology it
remains an open issue as to how close to generic Agent Communication
Languages (ACLs – such as FIPA-ACL, KQML etc.) AIF definitions may
get. This affects possible re-use of ACL concepts and/or overlap with them
and/or worries about tractability issues which affected ACL semantics also
affecting the semantics of concepts defined here.

3. How should the community of users around the AIF organize themselves to
agree on core concepts and extensions?

4. How should reifications be generated in detail from high level concepts (e.g.
development of specific RDF / XML schemas or other syntax forms?

A longer version of this document, initial inputs, previous versions and a
discussion forum for feedback can be found on the AIF website at http://
x-opennet.org/aif/.

5.1 Acknowledgments

Support is also gratefully acknowledged from Agentlink III 18 European Commis-
sion and the ASPIC (FP6-IST-002307)19 research funded projects. Additional
inputs and contributions are also gratefully acknowledged from all of the follow-
ing: Leila Amgoud, Trevor Bench-Capon, Jamal Bentahar, Ivan Bratko, Mar-
tin Caminada, Sylvie Doutre, John Fox, Dan Grecu, David Hitchcock, Tsakou
Ioanna, Paul Krause, Nicolas Maudet, Peter McBurney, Maxime Morge, Martin
Mozina, Simon Parsons, Henri Prade, Henry Prakken, Chris Reed, Dave Robert-
son, Michael Rovatsos, Carles Sierra, and Michael Wooldridge.

While efforts have been made to reach a consensus on the content of this
document, it is important to note that it remains the integration of a wide
range of inputs, hence the final result may not necessarily reflect the opinion of
everybody who contributed – authorship or being listed as contributor does not
necessarily imply complete agreement with the text.

References

1. T. J. M. Bench-Capon. Argument in artificial intelligence and law. Artificial
Intelligence and Law, 5(4):249–261, 1997.

2. D. Carbogim, D. Robertson, and J. Lee. Argument-based applications to knowledge
engineering. Knowledge Engineering Review, 15(2):119–149, 2000.

3. C. I. Chesñevar, A. Maguitman, and R. P. Loui. Logical models of arguments.
ACM Computing Surveys, 32(4):337–383, 2000.

4. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person games. Artifical Intel-
ligence, 77:321–357, 1995.

5. M. Elhadad. Using argumentation in text generation. Journal of Pragmatics,
24:189–220, 1995.

18 http://www.agentlink.org
19 http://www.argumentation.org

18

6. FIPA. Communicative Act Library Specification. Technical Report XC00037H,
Foundation for Intelligent Physical Agents, 10 August 2001.

7. T. F. Gordon and N. Karacapilidis. The Zeno argumentation framework. In
Proceedings of the Sixth International Conference on AI and Law, pages 10–18,
New York, NY, USA, 1997. ACM Press.

8. C. L. Hamblin. Fallacies. Methuen, London, UK, 1970.
9. P. A. Kirschner, S. J. B. Schum, and C. S. Carr, editors. Visualizing Argumentation:

Software Tools for Collaborative and Educational Sense-Making. Springer Verlag,
London, 2003.

10. N. Maudet and B. Chaib-draa. Commitment-based and dialogue-game based pro-
tocols: new trends in agent communication languages. The Knowledge Engineering
Review, 17(2):157–179, June 2002.

11. N. Maudet and B. Chaib-draa. Commitment-based and dialogue-game based pro-
tocols – new trends in agent communication language. Knowledge Engineering
Review, 17(2):157–179, 2003.

12. P. McBurney, D. Hitchcock, and S. Parsons. The eight-fold way of deliberation
dialogue. Intelligent Systems (In press), 2005.

13. P. McBurney and S. Parsons. Games that agents play: A formal framework for di-
alogues between autonomous agents. Journal of Logic, Language and Information,
Special Issue on Logic and Games, 11(3):315–334, 2002.

14. P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent argumenta-
tion protocols. In Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2002), pages 402–409. ACM
Press, July 2002.

15. H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In
D. Gabbay and F. Günthner, editors, Handbook of Philosophical Logic, volume 4,
pages 219–318. Kluwer Academic Publishers, 2002.

16. I. Rahwan. (Editor) Special Issue on Argumentation in Multi-Agent Systems.
Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), 11(2):115–
206, September 2005.

17. I. Rahwan, P. Moraitis, and C. Reed, editors. Argumentation in Multi-Agent Sys-
tems: First International Workshop, ArgMAS 2004, New York, NY, USA, July
19, 2004, Revised Selected and Invited Papers, volume 3366 of Lecture Notes in
Artificial Intelligence. Springer Verlag, Berlin, Germany, 2005.

18. C. Reed and T. J. Norman, editors. Argumentation Machines: New Frontiers in
Argument and Computation, volume 9 of Argumentation Library. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2004.

19. D. Robertson. Multi-agent coordination as distributed logic programming. In In-
ternational Conference on Logic Programming, pages 416–430, Sant-Malo, France,
2004.

20. K. Sycara. The PERSUADER. In D. Shapiro, editor, The Encyclopedia of Artificial
Intelligence. John Wiley & Sons, January 1992.

21. S. Toulmin. The Uses of Arguments. Cambridge University Press, 1958.
22. F. H. van Eemeren, R. F. Grootendorst, and F. S. Henkemans. Fundamentals of

Argumentation Theory: A Handbook of Historical Backgrounds and Contemporary
Applications. Lawrence Erlbaum Associates, Hillsdale NJ, USA, 1996.

23. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. SUNY Press, Albany NY, USA, 1995.

