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Abstract
The Open Argument Mining Framework
(oAMF) addresses key challenges in argument
mining research which still persist despite the
field’s impressive growth. Researchers often
face difficulties with cross-system comparisons,
incompatible representation languages, and lim-
ited access to reusable tools. The oAMF intro-
duces a standardised yet flexible architecture
that enables seamless component benchmark-
ing, rapid pipeline prototyping using elements
from diverse research traditions, and unified
evaluation methodologies that preserve theo-
retical compatibility. By reducing technical
overhead, the framework allows researchers to
focus on advancing core argument mining capa-
bilities rather than reimplementing infrastruc-
ture, fostering greater collaboration at a time
when computational reasoning is increasingly
vital in the era of large language models.

1 Introduction

Argument Mining (AM) represents one of the most
intellectually stimulating frontiers in computational
linguistics today. However, for researchers and
practitioners in the AM community, several pain
points have become increasingly apparent. First,
the inherently modular nature of argument mining –
comprising multiple interdependent subtasks – cre-
ates substantial difficulties when attempting to com-
pare systems or integrate components from differ-
ent research efforts. Second, even when technical
integration is possible, conceptual interoperability
is hindered by divergent representation languages
that encode different theoretical assumptions about
argument structure. Finally, despite the wealth of
research publications, there is a notable scarcity of
accessible, reusable tools, with many innovations
remaining as isolated research prototypes (Chen

et al., 2024; Habernal et al., 2024; Kawarada et al.,
2024; Cabessa et al., 2025; Gorur et al., 2025a).

These challenges directly impact the daily work
of argument mining researchers: How does one
fairly compare a newly developed component
against existing approaches? How can a task-
specific module be efficiently integrated into an
end-to-end system? What is the most effective way
to evaluate and visualise results across different
argument representations?

The Open Argument Mining Framework (oAMF)
addresses these fundamental concerns by providing
a standardised yet flexible architecture that facili-
tates module comparison, system integration, and
consistent evaluation methodologies. Unlike pre-
vious approaches that have prioritised specialised
solutions for narrow use cases, the oAMF creates an
ecosystem where researchers can:

• Seamlessly benchmark new components
against established baselines using standard-
ised interfaces

• Rapidly prototype end-to-end argument min-
ing pipelines by mixing components from dif-
ferent research traditions

• Visualise and evaluate results through unified
representation formats that maintain theoreti-
cal compatibility

By reducing the technical overhead associated
with these common development scenarios, the
oAMF aims to accelerate innovation while preserv-
ing the theoretical diversity that has been a hall-
mark of argument mining research. The framework
empowers researchers to focus on advancing core
argument mining challenges rather than reimple-
menting infrastructure components, ultimately fos-
tering greater collaboration across the community.



Currently, the framework includes 17 widely used
AM modules, all available on GitHub for commu-
nity contributions. New modules can also be added,
with each module expected to follow specific in-
put/output formats, implementation guidelines, and
configuration requirements (see Section 4).

2 Practical Problems faced by AM system
developers

The deployment of applied argument mining sys-
tems is still in its infancy. Despite more than a
decade of research in argument mining (ultimately
stretching back to (Moens et al., 2007), but now
eleven years with the dedicated forum provided by
the Argument Mining Workshop) there have been
few live systems deployed beyond laboratory set-
tings. The most high-profile is the work at IBM
(Slonim et al., 2021) which has to a large extent
been rolled in to watsonx as part of their commercial
offering. In addition, there are more modest exam-
ples such as args.me (Wachsmuth et al., 2017) and
the Evidence Toolkit (Visser et al., 2020) amongst
others. But the engineering and deployment of
systems that involve AM remains a rarity.

With the revolution in NLP ushered in by LLMs,
the ability to handle reasoning in language is be-
coming paramount, and as a result the handling of
structures of argumentation is of rapidly increasing
importance, as evidenced by the dramatic uptick in
papers on the topic in the ACL anthology which
returns 7,500 papers for the search “argument*
mining" at time of writing.

Yet there are several fundamental methodolog-
ical challenges that face both researchers and de-
velopers setting out to build argument mining algo-
rithms and systems.

The all-or-nothing challenge. Reliably extract-
ing the structure of reasoning expressed in natural
language remains one of the most challenging open
problems in NLP today. Many different architec-
tures and approaches have been applied, and though
monolithic end-to-end systems are rather rare (Eger
et al., 2017), the more modular approaches very
typically have to either engineer end-to-end system
componentry, or else release systems that make
major I/O assumptions (such as the availability of
reliably segmented input data, or the availability
of directionality labelling subsystems). Building
an entire application system that exploits argument
mining is therefore an all-or-nothing affair, requir-
ing system building from user input to user output.

The reusability challenge. Part of the reason
for the all-or-nothing challenge is that tools and
algorithms released by the community are typi-
cally rather shortlived and idiosyncratic, making
their reuse difficult in the short term, and all but
impossible over the course of a few years. As a
result, progress is rarely able to make use of pre-
vious work, reusing, for example, techniques for
segmentation, where that is not the focus of current
work.

The interoperability challenge. The other part
of the reason for the all-or-nothing challenge is the
lack of well-defined modularity or the ability for
subsystems to exchange data in a common repre-
sentation language. Freeman (Freeman, 1991) has
become one of the most expressive underlying ref-
erence argumentation theories because of its abil-
ity to integrate approaches such as Toulmin (Toul-
min, 1958) with simpler pro-con models (Gorur
et al., 2025b), and as a result is used in data efforts
ranging from monological lab-constructed data of
the microtext corpus (Peldszus and Stede, 2016)
through to some of the largest manually annotated
dialogical corpora (Hautli-Janisz et al., 2022) cur-
rently available. Several shared tasks have focused
on exploiting this representational adequacy (Ruiz-
Dolz et al., 2024), but the sheer creative diversity
that has characterised argument mining for more
than a decade has also created a rich array of dif-
ferent approaches that effectively stymie interoper-
ability between them.

The evaluation challenge. In both academic
and commercial environments, providing unbiased
evaluation of techniques and systems is critical,
yet reliable measures of different aspects of argu-
ment mining performance are difficult to establish
beyond the bounds of controlled shared tasks, be-
cause of the lack of interoperability and standardi-
sation. Even the very measures that are deployed
vary widely from, for example, κ, which fails to
account for textual variation, through γ, which is
difficult to interpret.

3 Solving challenges in the development
of AM work

3.1 Compare against other modules

The oAMF allows for easy comparison of ap-
proaches on individual argument mining tasks by
creating two or more workflows that are identical
other than the specific task under consideration. A
variety of modules can then be tested on this task,



for example comparing a newly developed module
against existing state-of-the-art approaches. Impor-
tantly, the framework is not bound to any single
argumentation model or theory. It is designed to
support heterogeneous models and allows compo-
nents grounded in different frameworks, theories,
or representational schemes to interoperate seam-
lessly. This flexibility ensures that researchers can
easily adapt the framework to suit their preferred
models or experiment with multiple ones in paral-
lel.

3.2 Fit a single part in to an end-to-end
workflow

Although there are an increasing number of AM
works which take an ‘end-to-end’ view (Stab and
Gurevych, 2017; Persing and Ng, 2016; Potash
et al., 2017), it is still common to focus on specific
individual tasks from the identification of argument
components, through levels of increasing complex-
ity; considering the role of individual components,
considering argumentative relations, and consid-
ering more complex argumentative relationships,
such as an instance of an argumentation scheme.

The oAMF allows for different implementations
to be selected for each of these tasks, creating a
unified end-to-end approach that uses the best tech-
niques available along each step of the process.

3.3 Evaluation and Visualisation

Individual oAMF modules and AM pipelines com-
posed of oAMF modules—each responsible for a
specific subtask—can be executed, with the out-
put visualised using an oAMF-compatible visualisa-
tion tool (see an example of the argument graph
visualisation in Figure 1). Additionally, the out-
put can be assessed for performance using another
oAMF-compatible module, CASS. The CASS mod-
ule evaluates oAMF output based on metrics such as
Macro F1, Accuracy, Text Similarity, Kappa, and
U-Alpha. For example, a pipeline might start with
a module for dialog turn segmentation, followed
by a module for segmenting text into argumenta-
tive discourse units, a module for pre-processing
the discourse segments, and finally, a module for
argument relation identification. For a list of the
modules currently available in oAMF, see Section
4.3.

Figure 1: An argument map generated by the visualiser.

1 from xaif import AIF
2 # Sample xAIF JSON with 2 L nodes and 2 I nodes
3 aif_data = {"AIF": {"nodes": [
4 {"nodeID": 0, "text": "Example L node 1", "type": "L"},
5 {"nodeID": 1, "text": "Example L node 2", "type": "L"},
6 {"nodeID": 2, "text": "Example I node 1", "type": "I"},
7 {"nodeID": 3, "text": "Example I node 2", "type": "I"},
8 {"nodeID": 4, "text": "Default Inference", "type": "RA"}
9 ],

10 "edges": [
11 {"edgeID": 0, "fromID": 0, "toID": 2},
12 {"edgeID": 1, "fromID": 1, "toID": 3},
13 {"edgeID": 2, "fromID": 2, "toID": 4},
14 {"edgeID": 4, "fromID": 2, "toID": 3}
15 ],
16 "locutions": [{"nodeID": 0, "personID": 0}],
17 "participants": [{"firstname": "Speaker", "participantID": 0,

"surname": "Name"}]
18 },
19 "dialog": True
20 }
21
22 aif = AIF(aif_data) # Initialise the AIF object with xAIF data
23 aif.add_component(component_type = "locution", text = "Example L node

3.", speaker = "Another Speake") # The next ID (5) is assigned
24 aif.add_component(component_type = "proposition", Lnode_ID = 5,

proposition = "Example I node 3.") # The L-NodeID is required
25 aif.add_component(component_type = "argument_relation", relation_type =

"RA", iNode_ID2=3, iNode_ID1=6) # Requires I-Node IDs and AR type
26 print(aif.xaif) # Print the generated xAIF data
27 print(aif.get_csv("argument-relation")) # Exports to tabular format

Figure 2: xaif package to manipulate xAIF data.

4 Practical Solutions

4.1 How to create an oAMF module
The oAMF allows developers to create new argument
mining modules and integrate them with others,
simplifying interoperability and reproducibility of
AM systems. This section describes the process
of creating a new module, covering I/O format
constraints, its implementation, the project struc-
ture, how to configure the metadata file, the Flask
application routes, and a summary of steps for de-
veloping oAMF-compatible AM modules.

Input-Output Format: Each module uses xAIF
for input and output to ensure interoperability. The
xaif library provided by the oAMF simplifies xAIF
file manipulation (see Figure 2), helping develop-
ers in managing argumentative discourse structure
in a consistent format. The documentation can
be accessed at https://github.com/arg-tech/
xaif/blob/main/docs/tutorial.md.

https://github.com/arg-tech/xaif/blob/main/docs/tutorial.md
https://github.com/arg-tech/xaif/blob/main/docs/tutorial.md


Implementation: oAMF modules are imple-
mented as a dockerised web service to ensure porta-
bility and scalability. They are implemented using
the Flask framework, a lightweight Python web
framework for creating RESTful services. A set
of endpoints are exposed, allowing users to in-
teract with the module through HTTP requests.
Each module takes xAIF as input/output. Develop-
ers can build new modules by cloning a template
project, updating metadata, implementing module
logic, and configuring the service for containerisa-
tion. A template to help develop custom modules
is available at: https://github.com/arg-tech/
AMF_NOOP/. A step-by-step summary of module
development is provided in Appendix A.

4.2 How to create an oAMF pipeline

The oAMF offers different interfaces for building
and executing AM pipelines i.e., multiple modules
working sequentially. These components seam-
lessly integrate by using xAIF as a standardised
format for both input and output, ensuring smooth
data exchange throughout the pipeline. The avail-
able interfaces cover all different levels of technical
knowledge, including an API for advanced customi-
sation, a drag-and-drop interface for quick setup,
and a web interface for easy execution.

4.2.1 Programming API

The programming API allows defining a pipeline
by specifying and connecting modules through
their associated tags. The pipeline can then be
executed by providing an input file. The script
shown in Figure 3 depicts how to build and execute
an oAMF pipeline.

1 from oamf import oAMF
2 # Initialize the library
3 oamf = oAMF()
4 # Define pipeline as a graph
5
6
7 pipeline_graph = [
8 ("turninator", "segmenter"), # 'turninator' is a module that

segments dialogue into turns; 'segmenter' segments
discourse into ADUs

9 ("turninator", "segmenter2"), # another segmenter instance for
parallel processing

10 ("segmenter", "bert-te"), # 'bert-te' is a BERT-based
inference identifier module

11 ("segmenter2", "bert-te2") # another inference module instance
12 ]
13 oamf.pipelineExecutor(pipeline_graph, "input_file.json")

Figure 3: Create and execute pipeline with the oAMF
API.

4.2.2 Drag-and-Drop Interface
The oAMF integrates with n8n, an open-
source workflow automation tool1, available
at https://n8n.oamf.arg.tech/, offering
a visual, intuitive interface for constructing
pipelines. Users can easily drag and drop
modules and establish connections. Pipelines
can be executed using (1) the n8n interface with
user-provided input or (2) the oAMF library by
downloading workflow JSON files and running
oamf.pipelineExecutor(pipeline_graph,
“input_file.json”, “workflow.json”),
where pipeline_graph can be an empty list,
input_file.json holds xAIF input data, and
workflow.json is the n8n workflow.

4.2.3 Web Interface
The oAMF provides a web interface for quickly
running AM pipelines, which can be accessed at
https://oAMF.arg.tech. Users can upload in-
put data (e.g., text or xAIF files), select pre-built
pipelines using the n8n interface, and execute them
directly on the oAMF server—removing the need for
manual pipeline construction.

Figure 4: Web interface of oAMF for uploading input
data and running pre-built AM pipelines.

4.3 List extant functionality of the oAMF

In addition to providing a complete toolkit to imple-
ment new argument mining modules, and different
interfaces to connect them and execute pipelines,
the oAMF also comes with a set of pre-implemented
modules covering basic AM operations such as
segmentation, classification, or relation identifi-
cation. Some of these pre-implemented modules
are based on previous AM work. For example, a
segmenter based on TARGER (Chernodub et al.,
2019), a cascade propositionaliser (Jo et al., 2019),
a transformer-based argument relation identifier
(Ruiz-Dolz et al., 2021), a decoder-only model

1https://n8n.io

https://github.com/arg-tech/AMF_NOOP/
https://github.com/arg-tech/AMF_NOOP/
https://n8n.oamf.arg.tech/
https://oAMF.arg.tech
https://n8n.io


based on DialoGPT for argument relation identifi-
cation (Gemechu et al., 2024) or decompositional
argument mining (Gemechu and Reed, 2019). By
providing this set of pre-implemented modules cov-
ering basic AM operations, we make argument
mining accessible to a non-technical audience. A
list of available modules can be accessed here:
https://github.com/arg-tech/oAMF.

5 Conclusion

This paper addresses a significant challenge im-
pacting the AM community: the use, develop-
ment, and evaluation of practical solutions. For
that purpose, we provide a complete analysis of
the practical problems faced by the AM commu-
nity, grouped into four major categories. As a so-
lution to these problems, we introduce the oAMF:
a set of libraries, modules, and interfaces aimed
at making AM accessible to users with different
technical backgrounds. The oAMF allows, at the
same time, developers to create new interoperable
modules from scratch that can be connected with
the existing ones, programmers to implement dif-
ferent AM pipelines connecting different modules
and evaluate them fairly, and non-technical users to
analyse text in search for argument structures with
a codeless interface.
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A Implementation Details

Project Structure The project structure contains the following key components:

• config/metadata.yaml: Contains metadata information about the module.

• project_src_dir/: Directory with the application code, including Flask routes and logic.

• boot.sh: Shell script to activate the environment and launch the app.

• docker-compose.yaml: Defines the Docker service and its setup.

• Dockerfile: Specifies image configuration and dependencies.

• requirements.txt: Python dependencies list.

Metadata Configuration The metadata.yaml file provides essential module details:

Name: "Name of the Module"
Date: "2024-10-01"
Originator: "Author"
License: "Your License"
AMF_Tag: Your_tag_name
Domain: "Dialog"
Training Data: "Annotated corpus X"
Citation: ""
Variants:
- name: 0 version: null
- name: 1 version: null

Requires: text
Outputs: segments

Flask Application Routes

• Index Route (/): Displays the contents of the README.md file.

• Module Route (customisable):

– POST requests process xAIF input and return modified output.
– GET requests return module metadata and documentation.

Steps to Develop a Module

1. Clone the NOOP template from the repository: https://github.com/arg-tech/AMF_NOOP/

2. Modify metadata.yaml with your module’s details.

3. Implement core logic in routes.py.

4. Use the xAIF library to manipulate xAIF data.

5. Set up Dockerfile and docker-compose.yaml.

6. Update the README.md with documentation.

https://github.com/arg-tech/AMF_NOOP/
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